首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electric surface charge configuration of 3T3 and SV40-3T3 cells was characterized by determining the product of electrophoretic mobility of the cells times the viscosity of suspension medium. This quantity could be shown to change with temperature and/or treatment with calf serum or trypsin in close correlation with the effects of these agents on characteristics of cell proliferation. The present results, taken together with those of earlier studies on cell-electrophoresis and characterization of lipid constituents of the cells, support the hypothesis of a lateral phase separation in the plasmamembrane as triggering process in stimulation of proliferation of resting normal cells.  相似文献   

2.
Modulation of the T3 molecule on human T cells with monoclonal anti-T3 antibodies has been shown to result in the disappearance of the T3-Ti complex from the membrane and to preclude subsequent T cell activation by various mitogenic and antigenic stimuli. We have examined the effect of T3 modulation on pokeweed mitogen (PWM)-induced T cell activation. T3 modulation was accomplished by incubating peripheral blood mononuclear cells (PBMC) or mixtures of T cells and non-T cells at 37 degrees C for 18 hr in the presence of UCHT-1, a mouse IgG1 anti-T3 monoclonal antibody. Only donors whose PBMC were unresponsive to the mitogenic activity of this antibody were selected. Although T3 modulation resulted in complete to substantial inhibition of T cell proliferation induced by low PWM concentrations of 5 or 50 ng/ml, it had no effect on T cell proliferation when PWM was added at a concentration of 0.5 and 5 micrograms/ml. The results demonstrate that the higher doses of PWM can induce T cell proliferation via an alternative pathway that does not involve participation of the T3-Ti complex. In contrast, irrespective of the PWM dose added, T3 modulation almost totally inhibited PWM-induced interleukin 2 (IL 2) production. The differential effect of T3 modulation on IL 2 production and on T cell proliferation induced by high doses of PWM suggests that this alternative pathway of T cell proliferation is IL 2 independent. This suggestion was additionally substantiated by the lack of effect of anti-Tac, and anti-IL 2 receptor antibody, on PWM-induced proliferation of T3-modulated T cells. In conclusion our data demonstrate that high doses of PWM can induce T cells to proliferate via an alternative pathway that does not involve perturbation of the T3-Ti complex.  相似文献   

3.
Effects of thyroid hormones on human breast cancer cell proliferation   总被引:1,自引:0,他引:1  
The involvement of estrogens in breast cancer development and growth has been well established. However, the effects of thyroid hormones and their combined effects with estrogens are not well studied. We investigated the response of human breast cancer cells to thyroid hormone, particularly the role of T3 in mediating cell proliferation and gene expression. We demonstrated that 17β-estradiol (E2) or triiodothyronine (T3) promoted cell proliferation in a dose-dependent manner in both MCF-7 and T47-D cell lines. The E2- or T3-dependent cell proliferation was suppressed by co-administration of the ER antagonist ICI. We also demonstrated that T3 could enhance the effect of E2 on cell proliferation in T47-D cells. Using an estrogen response element (ERE)-mediated luciferase assay, we determined that T3 was able to induce the activation of ERE-mediated gene expression in MCF-7 cells, although the effects were much weaker than that induced by E2. These results suggest that T3 can promote breast cancer cell proliferation and increase the effect of E2 on cell proliferation in some breast cancer cell lines and thus that T3 may play a role in breast cancer development and progression.  相似文献   

4.
The multiple sclerosis (MS) plaque is characterized by mononuclear inflammatory cell infiltration, demyelination, loss of oligodendrocytes (OGC), and proliferation of astrocytes. Although antigen-specific, Ia-dependent cellular immune mechanisms have been sought in plaque pathogenesis, Ia-independent T cell activation has not been actively investigated. We examined a potential role of OGC in accessory cell-dependent T cell mitogenesis with the anti-T3 monoclonal antibody OKT3. OGC isolated from ovine white matter on sucrose density gradients were uniformly negative for esterase activity, unlike ovine monocytes. Purified human T cells did not exhibit significant proliferation in 3-day cultures with OKT3, autologous peripheral blood adherent cells (PBAC), or ovine OGC. When T cells were cultured with either PABC or OGC in the presence of OKT3, brisk mitogenesis was observed. Thus, OGC have the capacity to function as accessory cells in the mitogen-induced proliferation of T cells.  相似文献   

5.
Naive T cells undergo spontaneous slow proliferation on adoptive transfer into syngeneic T cell (T)-deficient hosts. Recent work has shown that such "homeostatic" T cell proliferation is driven by MHC molecules loaded with self-peptides rather than foreign peptides. Because naive T cells in normal T-sufficient hosts remain in interphase despite continuous contact with self-MHC/peptide ligands, T cells apparently inhibit homeostatic proliferation of neighboring T cells. To address this, we have investigated the requirements necessary for "bystander" T cells to inhibit homeostatic proliferation of other T cells. Three key findings are reported. First, homeostatic proliferation of T cells only occurs in specific microenvironments, namely the T cell compartment of the secondary lymphoid tissues. Second, direct entry into T cell compartments is also required for bystander inhibition of homeostatic proliferation. Third, bystander inhibition is mediated largely by naive rather than activated/memory T cells and does not require proliferation or TCR ligation. These findings suggest that homeostasis of naive T cells is unlikely to be regulated through competition for systemic soluble factors or for specific stimulatory self-MHC/peptide ligands. Rather, the data favor mechanisms that involve competition for local non-MHC stimulatory factors or direct cell-to-cell interactions between the T cells themselves within the T cell compartment.  相似文献   

6.
CD28 is an antigen of 44 kDa which is expressed on the membrane of the majority of human T cells. The present study examines the functional effects of an anti-CD28 monoclonal antibody (mAb 9.3) on T cell activation induced with immobilized anti-CD3 mAb OKT3 or with mitogens, in the absence of accessory cells. To this end, we used blood resting T cells that were completely depleted of accessory cells (monocytes, B cells, and natural killer cells), and consequently did not respond to recombinant interleukin-2 (rIL-2), to immobilized OKT3, to PHA, or to Con A. Addition of mAb 9.3 to the cultures enhanced IL-2 receptor expression (Tac antigen) on PHA- or immobilized OKT3-stimulated T cells and induced IL-2 receptors on Con A-stimulated T cells. Moreover, addition of mAb 9.3 to cultures of T cells stimulated with PHA, Con A, or immobilized OKT3 resulted in IL-2 production. Soluble mAb 9.3 was a sufficient helper signal for T cell proliferation in response to PHA or immobilized OKT3. Crosslinking of mAb 9.3 by culture on anti-mouse IgG-coated plates enhanced the helper effect and was an essential requirement for the induction of T cell proliferation in response to Con A. No other anti-T cell mAb (anti-CD2, -CD4, -CD5, -CD7, -CD8) was found to provide a complete accessory signal for PHA or Con A stimulation of purified T cells. T cell proliferation induced by the combination of PHA and mAb 9.3 was strongly inhibited by the anti-IL-2 receptor mAb anti-Tac. In conclusion, mAb 9.3 can provide a signal bypassing monocyte requirement in T cell activation with immobilized OKT3, PHA, and Con A, resulting in an autocrine IL-2-dependent pathway of proliferation.  相似文献   

7.
The effect of monoclonal antibodies (Mab) directed at T cell and accessory cell (AC) surface molecules on OKT3-induced T4 and T8 cell proliferation was examined. Mab directed at nonpolymorphic class I (W6/32, MB40.5) and class II (L243) major histocompatibility complex (MHC)-encoded gene products, an epitope common to LFA-1, CR3, and the p150, 95 molecule (60.3), and a heterodimer present on monocytes (M phi) and activated T cells (4F2) inhibited M phi-supported OKT3-induced proliferation of both T4 and T8 cells. Moreover, an Mab directed at the CD4 molecule (66.1) inhibited OKT3-induced T4 but not T8 cell proliferation, whereas an Mab directed at the CD8 molecule (OKT8) inhibited T8 but not T4 cell responses. With the exception of 66.1, each inhibited OKT3-induced T cell proliferation when added as late as 15 hr after the initiation of culture. Inhibition could not be explained by competition for Fc receptors on the AC. A variety of other Mab including OKT11 and those directed at other HLA-DR and DQ determinants were not inhibitory. The inhibitory Mab were found to diminish T4 cell IL 2 production and IL 2 receptor expression. Consequently, IL 2 reversed some but not all of the Mab-mediated inhibition of T cell proliferation. In contrast to the effects noted with M phi-supported responses, 60.3 and 66.1 but neither L243 nor 4F2 inhibited OKT3-induced T4 cell proliferation supported by Ia- or IFN-gamma-treated Ia+ endothelial cells. None of the Mab tested inhibited T cell proliferation induced by the AC-independent stimuli OKT3 and phorbol myristate acetate (PMA) or calcium ionophore and PMA in the presence or absence of added AC. The data therefore suggest that the Mab inhibit OKT3-induced activation of T4 and T8 cells by preventing necessary interactions between AC and T cell surface proteins. Moreover, the results suggest that different arrays of interaction molecules are involved in OKT3-induced T cell proliferation depending on the nature of the AC and the responding T cell subset.  相似文献   

8.
In vivo and in vitro experiments show that polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA) inhibit mitogen- or antigen-stimulated proliferation of T cells in rodents and humans. However, the exact manner and mechanisms by which PUFA inhibits T cell proliferation is not clear. In the present study, we investigated the suppressive effects of EPA, an n-3 PUFA, on PHA stimulated human peripheral blood T cells. Our results showed that EPA suppresses mitogen- or antigen-stimulated human T cell proliferation by at least 2 steps; step 1) EPA suppresses T cell proliferation by inhibiting IL-2R alpha expression and IL-2 production; step 2) EPA induces cell death of blast T cells without reducing the expression of IL-2R alpha. We also showed that EPA selectively stimulates the cell death of blast T cells but not resting T cells. The suppressive effect of EPA was mediated via the production of reactive oxygen products, because EPA-stimulated H2O2 production and the suppressive effect of EPA was restored by addition of catalase or NAC. These results taken together suggest that such immunosuppressive effects of EPA may explain the apparent benefits of EPA-enriched diets for patients with inflammatory disorders.  相似文献   

9.
Antibodies directed against the human T cell receptor or the closely associated CD3 molecule stimulate polyclonal T cell proliferation via mechanisms that mimic a primary immune response. We have investigated the requirement for IL-1 production in anti-CD3 (OKT3)-mediated mitogenesis using a Hodgkin's disease cell line (L428) as the accessory cell. L428 cells did not produce detectable IL-1 following stimulation with lipopolysaccharide or phorbol ester (PMA), nor did they transcribe detectable levels of mRNA for IL-1 alpha or beta after such treatment. Despite their inability to produce IL-1, as few as 1 X 10(4) L428 cells reconstituted the proliferative response of accessory cell-depleted T cells to anti-CD3. Although larger numbers of non-rosette-forming (E-) cells were required for maximal responsiveness to anti-CD3, the maximal degree of proliferation was higher with E- cells than with L428 cells. L428-mediated T cell proliferation did not result from residual accessory cells in the responding population or an allogeneic effect since L428 cells were also capable of providing accessory cell activity for the anti-CD3-dependent generation of IL-2 by the Jurkat T cell line. Although the mechanism by which L428 cells provide accessory functions remains incompletely characterized, the ability of anti-HLA-DR F(ab')2 fragments to completely abrogate L428 and monocyte-mediated anti-CD3 mitogenesis, despite the addition of exogenous IL-1, provides evidence for the participation HLA-DR molecules in this response. These data indicate that anti-CD3-induced proliferation of unprimed human T lymphocytes can occur independently of IL-1 production by accessory cells and may involve the participation of HLA-DR molecules.  相似文献   

10.
Several Ia+ (BC3A, TA3, D1B) or Ia-inducible (WEHI-3, P388D1) tumor lines were tested for accessory cell function for the activation of antigen-specific T cell proliferation and for the induction of T helper cells that help B cells in antibody production. All lines were able to induce antigen-specific T cell proliferation in an MHC-restricted way, but none activated T helper cells to soluble antigens under all conditions tested. In comparison, starch-induced peritoneal exudate macrophages induced T cell proliferation as well as T cell help. Some of the lines tested induced nonspecific suppressor cells that were Ly-2-positive and partially or completely inhibited antibody responses. The induction of suppressor cells, however, is not the reason for the failure of the tumor lines to activate T helper cells. These data indicate that antigen-specific T cell proliferation and helper activity do not necessarily correlate.  相似文献   

11.
The role of leukocyte function-associated Ag-1 (LFA-1) in intercellular adhesion is well documented. Previously, we demonstrated that the LFA-1 molecule (CD11a/CD18) can also regulate the induction of proliferation of peripheral blood T cells. In these studies, we observed opposite effects of antibodies against CD11a (LFA-1-alpha-chain) or CD18 (LFA-1-beta-chain). Here, we determined the effects of anti-CD11a and anti-CD18 mAb on proliferation of cloned influenza virus-specific T cells. Anti-CD18 mAb had similar inhibiting effects on the proliferative response of T cell clones induced by immobilized anti-CD3 mAb as it had on the response of peripheral blood T cells. In contrast to its costimulatory effect on resting peripheral blood T cells, anti-CD11a mAb did not increase the proliferation of cloned T cells. Similar differences in effects of anti-CD11a and anti-CD18 mAb were observed when proliferation of the T cell clones was induced by immobilized anti-TCR mAb. When proliferation was induced by influenza virus presented by monocytes as APC, both anti-CD11a and anti-CD18 mAb inhibited T cell proliferation. However, when EBV-transformed B cells were used as APC, neither anti-CD11a nor anti-CD18 mAb inhibited proliferation. These results demonstrate that the effects of antibodies against CD11a (LFA-1-alpha) or CD18 (LFA-1-beta) on T cell proliferation depend on 1) the stage of activation of the T cells, 2) the activation stimulus and its requirement for intercellular adhesion involving LFA-1, and 3) the type of cell used to present Ag.  相似文献   

12.
The requirements for activation of human peripheral blood T cells by the mitogenic monoclonal antibody OKT3 were examined. OKT3 binds to a T cell molecule, T3, associated with the T cell antigen receptor and involved in T cell activation. Activation of T cells by OKT3 requires signals provided by accessory cells and is IL 2 dependent. In the presence of accessory cells, OKT3 induces loss of T3 molecules from the cell surface, production of IL 2, expression of IL 2 receptors, and proliferation. Modulation of T3 molecules by OKT3 can be induced in the absence of accessory cells with anti-mouse IgG. These T cells, however, are not induced to express IL 2 receptors or secrete IL 2. The addition of IL 1 induces expression of IL 2 receptors, but does not induce IL 2 secretion or proliferation. Thus, peripheral blood T cells appear to have different requirements for activation compared with antigen-specific T cell clones that can be induced to produce IL 2 when stimulated with OKT3 and IL 1. Expression of IL 2 receptors does not require modulation of T3 molecules, because the binding of OKT3 to T cells in the presence of IL 1 alone is sufficient to induce IL 2 receptor expression. The results suggest that IL 2 secretion depends on cross-linking and modulation of T3 molecules, and additional, as yet undefined, accessory cell signals. The expression of IL 2 receptors and proliferation of T cells can be induced in the absence of these signals when exogenous IL 2 is provided.  相似文献   

13.
Regulation of murine T cell proliferation by B cell stimulatory factor-1   总被引:5,自引:0,他引:5  
The proliferation of mitogen-activated primary T cells, antigen-activated memory T cells from mixed leukocyte culture, and antigen-dependent alloreactive T cell clones in response to purified murine recombinant B cell stimulatory factor-1 (also known as interleukin 4) was examined. We found that B cell stimulatory factor-1 (BSF-1) stimulated optimal proliferation of these T cells only after their recent activation by antigen or mitogen. Analysis of cell surface BSF-1 receptor expression indicated that although T cell activation is accompanied by a small increase in BSF-1 receptor expression, the cells also express BSF-1 receptors prior to activation at a time when they do not proliferate in response to BSF-1. BSF-1 was as effective a stimulus as interleukin 2 for inducing proliferation of the Lyt-2+ subpopulation of concanavalin A-activated murine spleen cells and an alloreactive cytolytic T cell clone. However, the L3T4+ subpopulation of concanavalin A-activated spleen and an alloreactive helper T cell clone were less responsive to BSF-1 than to interleukin 2. Taken together, the data indicate an important role for BSF-1 in the regulation of normal T cell proliferation.  相似文献   

14.
FK-506 and the structurally related macrolide rapamycin (RAP) were investigated in comparison with cyclosporin A (CsA) for their immunosuppressive effects on murine T cells. All three agents suppressed the proliferation of splenic T cells triggered by lectins or antibodies to CD3 and Ly-6C. FK-506 or CsA also inhibited proliferation, IL-2 production, and IL-2R expression in splenic T cells activated with ionomycin + PMA. However, RAP minimally affected IL-2 production and IL-2R expression in these cells, although it reduced proliferation. Similarly, FK-506 and CsA, but not RAP, suppressed IL-2 production by activated DO.11.10 T hybridoma cells. In such a system, as well as in normal T cells stimulated with high ionomycin concentrations, FK-506 and CsA enhanced proliferation, indicating that they both abrogate negative signals associated with T cell activation. On the contrary, RAP diminished the autonomous proliferation of hybridoma cells, whereas FK-506 and CsA had little effect. The proliferative response induced in D10.G4 cells by IL-1 + ionomycin but not that induced by IL-1 + PMA was sensitive to inhibition by FK-506 and CsA. In contrast, RAP inhibited equally well both types of stimulation. Finally, T cell proliferation driven by IL-2 or IL-4 was found to be relatively resistant to FK-506 or CsA but sensitive to RAP. Altogether, these data demonstrate that FK-506 and CsA alter similar calcium-associated events of T cell activation and block T cell proliferation primarily by suppressing lymphokine production. RAP interferes with a different set of events and inhibits T cells by impairing their response to growth-promoting lymphokines.  相似文献   

15.
CsA interferes in a specific manner with the expansion of T cell clones in that it inhibits the antigen-driven component of the proliferative responses made by cloned helper T cells, cloned conventional cytolytic T cells, and cloned helper-independent cytolytic T cells. Cloned helper T cells and helper-independent cytolytic T cells, which share the ability to proliferate when cultured with specific alloantigen, fail to proliferate when cultured with specific alloantigen, fail to proliferate in response to this stimulus in the presence of CsA (10 to 100 ng/ml). In contrast, the proliferation observed when these cells are cultured with exogenous growth factors (but not alloantigen) is little influenced by as much as 1000 ng/ml CsA. When cloned helper T cells or helper-independent cytotoxic T cells are cultured with alloantigen plus exogenous growth factor, additive or synergistic proliferation occurs. However, CsA (10 to 1000 ng/ml) blocks only the component of proliferation induced by alloantigen, and leaves the lymphokine-driven component intact. CsA has similar effects on the proliferation of cloned conventional cytolytic T cells. Thus, CsA separates cloned T cell proliferation into two components: one driven by contact with alloantigens, the other driven by contact with mitogenic lymphokines.  相似文献   

16.
The capacity of mAb directed at the CD3 molecular complex (64.1) to induce T cell-dependent B cell proliferation and differentiation was examined. Coculture of B cells with mitomycin C-treated T4 cells (T4 mito) stimulated by immobilized 64.1 resulted in marked B cell proliferation and Ig-secreting cells (ISC) generation in the absence of any additional stimulation. The magnitude of the B cell responses induced by immobilized 64.1-stimulated T4 mito was far greater than that induced by other stimuli, such as Staphylococcus aureus plus factors produced by mitogen-activated T cells, PWM, or soluble 64.1. The induction of maximal B cell responsiveness required direct contact between activated T cells and responding B cells. Of note, immobilized 64.1 also induced B cell proliferation and ISC generation in the presence of mitomycin C-treated T8 cells. By contrast, immobilized 64.1 stimulated T4 or T8 cells that had not been treated with mitomycin C induced very modest ISC generation and suppressed B cell responses supported by T4 mito even in the presence of exogenous IL-2 or factors produced by mitogen-activated T cells. The interactions between T and B cells in these cultures not only induced B cell responses, but also enhanced the production of IL-2 by activated T cells. Increased IL-2 production was facilitated when culture conditions afforded the opportunity for contact between B cells and activated T cells. These results indicate that the establishment of interactions between B cells and anti-CD3-stimulated T4 or T8 cells provides all of the signals necessary for proliferation and differentiation of B cells without other stimuli and also augments the production of lymphokines by the activated T cells. The data emphasize the role of Ag-nonspecific interactions between B cells and T cells in promoting polyclonal responses of both cell types.  相似文献   

17.
Transforming growth factor-beta (TGF-beta) exhibits diverse regulatory roles in the immune system and has been described as a potent inhibitor of lymphocyte and hemopoietic progenitor cell growth. The present studies investigated the effects of TGF-beta 1 on murine T cell proliferation triggered through the T cell receptor/CD3 complex. In contrast to previously reported T cell growth inhibition, TGF-beta 1 costimulated splenic T cell proliferation in the presence of immobilized anti-CD3 antibody 2C11, with maximal effect at anti-CD3 concentration of 50 micrograms/ml. Although TGF-beta 1 induced a modest increase in IL-2R display, TGF-beta 1 co-stimulated proliferation was largely independent of IL-2 and/or IL-4. Anti-IL-2 and/or anti-IL-4 antibody did not significantly block the TGF-beta 1 co-stimulated T cell growth, and no IL-2 or IL-4 bioactivity was detected in TGF-beta 1 co-stimulated cultures. TGF-beta 1 did not enhance IL-2 mRNA expression beyond control levels. However, TGF-beta 1 co-stimulation caused an accelerated evolution of a memory or mature T cell population phenotype. Both CD4+ and CD8+ T cell subsets were significantly enriched for cells of the mature CD45RBloPgp-1hi phenotype, in comparison with T cells stimulated by anti-CD3 alone or with PMA, and CD8+ T cells predominated. These results thus provide initial evidence that TGF-beta 1 is capable of bifunctional T cell growth regulation, which occurs largely via an IL-2- and IL-4-independent pathway.  相似文献   

18.
The culture supernatants of Con A-activated human peripheral blood mononuclear cells (PBM) contained at least two regulatory factors upon B cell proliferation. One was B cell growth factor (BCGF), which activated antigen-stimulated B cells to proliferation and clonal expansion, and the other was its inhibitory factor, arbitrarily named B cell growth inhibitory factor (BIF). This BIF inhibited the effect of BCGF on anti-mu-stimulated B cells or the monoclonal mature B cell line (CLL-T.H.) obtained from the peripheral blood lymphocytes of B cell-type chronic lymphocytic leukemia patients, which were activated only with BCGF and without adding other proliferating stimuli (e.g., anti-mu). BIF activity was detected in the 24 hr culture supernatants of Con A-activated human PBM in FCS containing medium and also in serum-free RPMI 1640 medium. This substance with BIF activity could not be derived from FCS. Con A-induced BIF (m.w. of 80,000 and an isoelectric point of pH 5.4) was analyzed by Sephadex G-200 gel filtration and chromatofocusing. BIF was stable at pH 2.0 and at 56 degrees C for 30 min. Partially purified BIF had no effect on cell viability and almost no interferon activity (less than 1 IU/ml). BIF with high titer had a slight but significant inhibition on TCGF-dependent T cell growth and on PHA or Con A responses, but the extent of these inhibitions was far less than that of BCGF-dependent B cell growth. Absorption of BIF with Con A blasts made its inhibition on T cell growth even less. On the other hand, BIF activity could not be absorbed with Con A blasts but was almost absorbed with large numbers of CLL-T.H. cells. BIF had almost no inhibitory effect on the proliferation of a mouse fibroblast cell line (NIH 3T3), a mouse myeloma cell line (NS-1), human lymphoid cell lines (MOLT-4, HSB-2, and Daudi), or a human myeloid cell line (K-562). BIF-producing cells were estimated to be T cells and were identified as T8+ T cells. On the other hand, Con A-induced BCGF was demonstrated to be produced predominantly by T4+ T cells. These results show that human B cell proliferation is regulated by interaction between T4+ and T8+ cells via soluble factors, namely BCGF and BIF, respectively.  相似文献   

19.
Regulation of human T cell proliferation by IL-7   总被引:21,自引:0,他引:21  
The regulation of human T cell proliferation by rIL-7 was investigated. Purified peripheral blood T cells were stimulated to proliferate in a short-term assay by IL-7 in the presence of CD3 mAb or lectin. This stimulation was accompanied by a significant increase in the expression of IL-2R on both CD4+ and CD8+ T cells over that seen with mitogen alone. The proliferation of these cells in the presence of exogenous IL-7 involved both IL-2-dependent and - independent mechanisms as shown by the ability of neutralizing IL-2 antibody to partially inhibit the response. Anti-IL-4 and anti-IL-6 antibodies had no effect on IL-7-induced T cell growth. These results suggest that the costimulatory effect of IL-7 on human T cells is primarily direct, not involving other intermediate T cell growth factors. IL-7 was also found to be mitogenic in a long-term assay in the absence of any costimulus, with the onset of proliferation occurring later than that seen in the presence of mitogen. These results demonstrate that IL-7 provides a potent T cell stimulus either alone or in the presence of co-mitogen and, although this stimulus is accompanied by an increase in the level of IL-2R expression, it is not dependent on the action of IL-2 for its effect.  相似文献   

20.
Histidine-rich glycoprotein (HRGP) is a plasma and platelet protein with undefined function in vivo. It has been reported to inhibit rosette formation between murine T cells and erythrocytes. We have shown that HRGP binds specifically to human T lymphocytes but not sheep erythrocytes and have demonstrated a 56-kDa HRGP-binding protein on the T cell surface which is distinct from the CD2 sheep erythrocyte receptor. We have now investigated whether HRGP can inhibit human T cell-sheep erythrocyte rosette formation and whether HRGP can modulate T cell activation. HRGP at physiologic concentrations specifically inhibited rosette formation between human T lymphocytes and sheep erythrocytes. HRGP suppressed proliferation of antigen receptor (CD3)-triggered T cells induced by interleukin 2; this suppression was specifically reversed by prior incubation of HRGP with affinity-purified anti-HRGP IgG. Addition of HRGP 12-24 h after CD3 triggering no longer suppressed T cell proliferation, suggesting HRGP suppressed T cell division by interfering with one or more early events in the process of T cell activation. Human serum (containing 100-150 micrograms/ml HRGP) was also capable of suppressing T cell proliferation; serum which had been immunodepleted of HRGP no longer inhibited T cell proliferation. Furthermore, HRGP inhibited interleukin 2 receptor expression on activated T cells, causing decreased T cell interferon-gamma release and altered T cell-dependent inhibition of erythropoiesis. HRGP is thus capable of modulating T cell activation and T cell immunoregulation; HRGP may function as a natural suppressive regulator of human T lymphocyte activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号