首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of a recently certified kinase inhibitor Tofacitinib (TFB) with bovine serum albumin (BSA) has been studied, by spectroscopic and molecular docking studies. Spectrofluorimetric measurements at 3 different temperatures (288, 298, and 310 K) showed that TFB quench the intrinsic fluorescence of BSA upon forming a nonfluorescent complex. The intrinsic fluorescence data showed that TFB binds to BSA with binding constant (K b) of approximately 104M−1, affirming a significant affinity of TFB with BSA. The decrease in Stern‐Volmer quenching constant with increasing temperature exhibited the static mechanism of quenching. Negative value of ΔG (−6.94 ± 0.32 kcal·mol−1), ΔH (−7.87 ± 0.52 kcal·mol−1), and ΔS (−3.14 ± 0.42 cal·mol−1·K−1) at all 3 temperatures declared the reaction between BSA and TFB to be spontaneous and exothermic. Far‐UV circular dichroism spectroscopy results demonstrated an increase in helical content of BSA in the presence of TFB. Moreover, dynamic light scattering measurements showed that TFB resulted into a decrease in the hydrodynamic radii (from 3.6 ± 0.053 to 2.9 ± 0.02 nm) of BSA. Molecular docking studies confirmed that TFB binds near site II on BSA, hydrogen bonding, and hydrophobic interaction were involved in the BSA‐TFB complex formation. The present study characterizing the BSA‐TFB interaction could be significant towards gaining an insight into the drug pharmacokinetics and pharmacodynamics and also in the direction of rational drug designing with better competence, against emerging immune‐mediated diseases, ie, alopecia and rheumatoid arthritis.  相似文献   

2.
Abstract

The thermodynamics of the opening/closure process of a GC base pair located at the stem-loop junction of the SL1 sequence from HIV-1Lai genomic RNA was investigated in the context of a loop-loop homodimer (or kissing complex) using molecular dynamics simulation. The free energy, enthalpy and entropy changes for the closing reaction are 0 kcal·mol?1, ?11 kcal·mol?1and ?0.037 kcal·mol?1-K?1 at 300° K respectively. Furthermore it is found that the free energy change is the same for the formation of a 11 nucleotide loop closed with UG and for the formation of a 9 nucleotide loop closed with GC. Our study evidences the high flexibility of the nucleotides at the stem-loop junction explaining the weak stability of this structure.  相似文献   

3.
The binding of water to the dimethylphosphate anion (DMP?) was calculated using the PCILO method. We found binding energies of 25.95 kcal·mol?1 in the O1-P-O3 plane bridging the anionic oxygen atoms and 19.3 kcal·mol?1 for the one-site association of a water molecule to an anionic oxygen atom of DMP?. In this range one water molecule added to DMP? in the O1 … O3 bridged configuration has a significantly higher binding energy to DMP? than water molecules added to other binding sites. The total binding energy of 5 water molecules to DMP? is 92 kcal·mol?1, a quantity which is about 10% less than the sum of the binding energies of the corresponding monohydrates.  相似文献   

4.
《FEBS letters》1986,200(1):226-230
Magnesium binding to cation-depleted blue bacteriorhodopsin (b-bR) was studied spectrophotometrically as well as by following stopped-flow kinetics. There exist three kinetically different steps in the binding process, yielding purple bacteriorhodopsin (p-bR). Since only the firtst step is dependent on the concentration of the reactants, the reaction scheme
can be proposed as the simplest model, with MgbR being the first intermediate and ΣI denoting a set of successive intermediates. According to this model k1, k−1 and k2 are calculated to be 2.8 × 104 M−1 · s−1, 5.0 × 10 s−1 and 1 × 10−2 s−1, respectively.  相似文献   

5.
Penetration of 1-alkanols into monolayers of hydrophobic polypeptides, poly(ε-benzyloxycarbonyl-l-lysine) and poly(ε-benzyloxycarbonyl-dl-lysine), was compared with their adsorption on the air/water interface in the absence of monolayers. The polypeptide prepared from l-lysine is generally considered to be in the α-helical form whereas dl-copolymer polypeptide contains random-coiled portions due to the structural incompatibility between the two isomers. The free energy of adsorption of 1-alkanols on the air/water interface at dilute concentrations was ?0.68 kcal·mol?1 per methylene group and 0.15 kcal·mol?1 for the hydroxyl group at 25°C. In the close-packed state, the surface area occupied by each molecule of 1-alkanols of varying carbon chain-lengths showed nearly a constant value of about 27.2 Å2, indicating perpendicular orientation of the alkanol molecules at the interface. About 75% of the water surface was covered by 1-butanol in this close-packed state. The mode of adsorption of 1-alkanols on the vacant air/water interface followed the Gibbs surface excess while the mode on the polypeptide membranes followed the Langmuir adsorption isotherm, indicating that the latter is characterized by the presence of a finite number of binding sites. The free energies of adsorption of 1-alkanols on the l-polymer monolayers were more negative than those on the vacant air/water interface and less negative than those on the dl-copolymer monolayers. Thus, the affinity of 1-alkanols to the interface was in the order of vacant air/water interface <l-polymer <dl-copolymer. The difference between the air/water interface and l-polymer was about 0.54 kcal·mol?1 and that between l-polymer and dl-copolymer was 0.17 kcal·mol?1 at 25°C: the adsorption of 1-alkanols to the dl-copolymer was favored compared to the l-polymer. The polar moieties of the backbone of the dl-copolymer may be exposed to the aqueous phase at the disordered portion. Dipole interaction between this portion and 1-alkanol molecules may account for the enhanced adsorption of the alkanols to the dl-copolymer.  相似文献   

6.
Abstract

In this study for the first time we have revealed and investigated in details 123 different prototropic tautomers of the most stable conformer of the quercetin molecule using quantum-mechanical calculations at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of QM theory. We have found that in the most energetically favorable prototropic tautomer mobile hydrogen atoms are localized at the О3, О3′, О4′, О5, and О7 exocyclic oxygen atoms. Molecular tautomers are in the range of the Gibbs free energies from 0.0 to 69.8?kcal·mol?1, while zwitterionic ones – from 30.1 до 172.8?kcal·mol?1 at normal conditions. It was also reliably established that the weakest point causing the decyclization of the molecule is its C ring – this reaction is launched by the transition of the proton from the C8H group to the endocyclic O1 oxygen atom. All prototropic tautomers, except two cases, are joined by the intramolecular cooperative specific interactions (from 1 to 5) – H-bonds and attractive van der Waals contacts, which have been revealed and characterized by QTAIM analysis.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Pulse radiolytic studies of α-tocopherol (αTH) oxidation-reduction processes were carried out with low doses (5 Gy) of high-energy electrons in O2−, N2−, and air-saturated ethanolic solutions. Depending on the concentration of oxygen in solution, two different radicals, A· and B·, were observed. The first, A·, was obtained under N2 and results from aTH reaction with solvated electron (kaTH+csolv = 3.4 × 108 mol−1 liter s−1) and with H3C-ĊH-OH, (R·) (kaTH + R· = 5 × 105 mol−1 liter s−1). B·, observed under O2, is produced by αTH reaction with RO2 peroxyl radicals (kaTH + RO2. = 9.5 × 104 mol−1 liter s−1).  相似文献   

8.
V.A. Sineshchekov  F.F. Litvin 《BBA》1977,462(2):450-466
Red luminescence of purple membranes from Halobacterium halobium cells in suspension, dry film or freeze-dried preparations was studied and its emission, excitation and polarization spectra are reported. The emission spectra have three bands at 665–670, 720–730 and at 780–790 nm. The position (maximum at 580 nm) and shape of the excitation spectra are close to those of the absorption spectra. The spectra depend on experimental conditions, in particular on pH of the medium. Acidification increases the long wavelength part of the emission spectra and shifts the main excitation maximum 50–60 nm to the longer wavelength side. Low-temperature light-induced changes of the absorption, emission and excitation spectra are presented. Several absorbing and emitting species of bacteriorhodopsin are responsible for the observed spectral changes. The bacteriorhodopsin photoconversion rate constant was estimated to be about 1 · 1011 s?1 at ? 196°C from the quantum yields of the luminescence (1 · 10?3) and photoreaction (1 · 10?1). The temperature dependence of the luminescence quantum yield points to the existence of two or three quenching processes with different activation energies. High degree of luminescence polarization (about 45–47%) throughout the absorption and fluorescence spectra and its temperature independence show that there is no energy transfer between bacteriorhodopsin molecules and no chromophore rotation during the excitation lifetime. In carotenoid-containing membranes, energy migration from the bulk of carotenoids to bacteriorhodopsin was not found either. Bacteriorhodopsin phosphorescence was not observed in the 500–1100 nm region and the emission is believed to be fluorescence by nature.  相似文献   

9.
To compare the OH-initiated reaction mechanisms of five chlorophenoxy herbicides, density functional theory (DFT) calculations of reactions in which ·OH attacks one of three active positions on each herbicide were carried out at the MPWB1K/6-311 + G(3df,2p)//MPWB1K/6-31 + G(d,p) level. For each herbicide, the calculation results show that ·OH addition to the C1 atom, which is the nexus between the benzene ring and the side group, possesses the lowest energy barrier among the three kinds of reactions, indicating that ·OH addition–substitution of the side chain is the most energetically and kinetically favorable reaction mechanism. Comparisons among the herbicides show that the mechanisms are affected by the steric hindrance and the electronegativities of the –CH3 and –Cl groups. When comparing the addition of ·OH to the C1 site among the five herbicides, the activation energy for the reaction of ·OH with DCPP reaction is the lowest (3.61 kcal mol?1), while that for the ·OH and 4-CPA reaction was the highest (5.91 kcal mol?1). ·OH addition to the C4 site presents the highest energy barriers among the three kinds of reactions, indicating that the para Cl is difficult to break down. When comparing the H-atom abstraction reactions of the five herbicides, the H atoms in the –CH2– group of 2,4-D are the easiest for ·OH to abstract, whereas those of DCPP and MCPP are more difficult to abstract, due to the steric hindrance of the –CH3 group. Additionally, the results obtained from the PCM calculations reveal that most of the reactions occur more easily in water than in gas, though the mechanisms involved are the same as those discussed above.  相似文献   

10.
Chlorocyclopropanes (CCPs) conjugated to alk-yn-enes occur in a unique family of polyketide natural products from marine sponges. Synthesis of several optically enriched analogs of CCPs and measurement of their UV–vis spectra and electronic circular dichroism (ECD) spectra reveal unusually strong hyperconjugation that constrains and aligns the cyclopropyl C-C bond with the π-plane of the distal ene-bond. This alignment imposes a barrier to rotation of at least 5.0 kcal·mol−1. Comparison of red-shifted Cotton effects in chiral CCPs show the barrier is independent of alkene substituent and establishes an empirical rule for assignment of other CCP-containing natural products.  相似文献   

11.
The binding of [G-3H]nitrobenzylthioinosine to intact Chinese hamster ovary cells has been studied kinetically and thermodynamically. The association of nitrobenzylthioinosine with cells is a second-order process which proceeds at 24°C with a rate constant of 2·107 M?1·s?1. Dissociation of the complex was characterized as a simple first-order process with rate constant on the order of 7·10?3 s?1. The quotient of these is comparable to the dissociation constant as measured in equilibrium binding studies, 2.2·10?10 M. The temperature dependence of the rate of association indicated an Arrhenius activation energy of 8.4 kcal·mol?1, while that of the equilibrium constant for dissociation indicated a standard enthalpy change of 8.8 kcal·mol?1. The large increase in affinity of nitrobenzylthioinosine as compared to natural nucleosides is attributable to an entropy-driven interaction with the binding site. Thymidine, dipyridamole and papaverine each decrease the apparent dissociation constant for the nitrobenzylthioinosine-cell complex; the latter, inhibitors of nucleoside transport, decrease the rate of dissociation of the complex.  相似文献   

12.
The enthalpies of the hexokinase-catalyzed phosphorylation or glucose, mannose, and fructose by ATP to the respective hexose 6-phosphates have been measured calorimetrically in TRIS/TRIS HCl buffer at 25.0, 28.5, and 32.0°C. The effects on the measured enthalpy of the glucose/hexokinase reaction due to variation of pH (over the range 6.7 to 9.0) and ionic strength (over the range 0.02 to 0.25) have been examined. Correction for enthalpy of buffer protonation leads to δHo and δCpo values for the processes: eq-D-hexose + ATP4− = eq-D-hexose 6-phosphate2− + ADP3−+ H+. Results are δHo = −23.8 ± 0.7 kJ · mol−1 and δCpo = −156 ± 280 J·mol−1·K−1 for glucose. δHo = −21.9 ± 0.7 kJ·mol−1 and δCpo = 10 ± 140 J·mol−1·K−1 for mannose, and δHo = −15.0 ± 0.9 kJ·mol−1 and δCpo = −41 ± 160 J·mol−1·K−1 for fructose. Combination of these measured enthalpies with Gibbs energy data for hydrolysis of ATP4− and that for the hexose 6-phosphates lead to δSo values for the above hexokinase-catalyzed reactions.  相似文献   

13.
The tautomerism and intramolecular hydrogen shifts of 5-amino-tetrazole in the gas phase were studied in the present work. The minimum energy path (MEP) information of 5-amino-tetrazole was obtained at the CCSD(T)/6–311G**//MP2/6–311G** level of theory. The six possible tautomers of 1H, 4H-5-imino-tetrazole (a), 1H-5-amino-tetrazole (b), 2H-5-amino-tetrazole (c), 1H, 2H-5-imino-tetrazole (d), the mesoionic form (e) and 2H, 4H-5-imino-tetrazole (f) were investigated. Among these tautomers, there are 2 amino- forms, 3 imino- forms, and 1 mesoionic structure form. In all the tautomers, 2-H form (c) is the energetically preferred one in the gas phase. In the imino- tautomers, the energy value of the compound d is similar as that of the compound f but it is higher than the energy value of the compound a. The potential energetic surface (PES) and kinetics for five reactions have been investigated. Reaction 2 (bc) was hydrogen shifts only in which the 1-H and 2-H rearrangement. This means that the reaction 2 (bc) is energetically favorable having an activation barrier of 45.66 kcal·mol−1 and the reaction energies (ΔE) is only 2.67 kcal·mol−1. However, the reaction energy barrier for tautomerism of reaction 1 (be) is 54.90 kcal·mol−1. Reaction 1 (ba), reaction 3 (cd), and reaction 5 (cf) were amino- →imino- tautomerism reactions. The energy barriers of amino- →imino- tautomerism reactions required are 59.39, 65.57, 73.61 kcal·mol−1 respectively in the gas phase. The calculated values of rate constants using TST, TST/Eckart, CVT, CVT/SCT and CVT/ZCT methods using the optimized geometries obtained at the MP2/6–311G** level of theory show the variational effects are small over the whole temperature range, while tunneling effects are big in the lower temperature range for all tautomerism reactions. Graphical Abstract Figure (DOC 45.0 KB)  相似文献   

14.
By isoelectric focusing, transcobalamin from human cerebrospinal fluid was separated into the phenotypes X, M, MX, SX and MS. The corresponding plasma transcobalamins were of identical phenotypes. The unsaturated cobalamin-binding capacity in the cerebrospinal fluid was 0.12–0.54 nmol·l−1, median 0.23 nmol·l−1; no difference in binding capacity was found between the individual phenotypes. The isopeptides M, X and S bound cyano[57Co]cobalamin from pH 6 to 10. The apparent affinity constant was the same for all the isopeptides (0.4·1012 l·mol−1, pH 7.4. The isopeptide-cobalamin complexes bound to acceptors and human placenta membranes with an apparent affinity constant of 11·109 l·mol−1, pH 7.4.  相似文献   

15.
The reaction between ligninase and hydrogen peroxide yielding Compound I has been investigated using a stopped-flow rapid-scan spectrophotometer. The optical absorption spectrum of Compound I appears different to that reported by Andrawis, A. et al. (1987) and Renganathan, V. and Gold, M.H. (1986), in that the Soret-maximum is at 401 nm rather than 408 nm. The second-order rate constant (4.2·105 M−1·s−1) for the formation of Compound I was independent of pH (pH 3.0–6.0). In the absence of external electron donors, Compound I decayed to Compound II with a half-life of 5–10 s at pH 3.1. The rate of this reaction was not affected by the H2O2 concentration used. In the presence of either veratryl alcohol or ferrocyanide, Compound II was rapidly generated. With ferrocyanide, the second-order rate constant increased from 1.9·104 M−1·s−1 to 6.8·106 M−1·s−1 when the pH was lowered from 6.0 to 3.1. With veratryl alcohol as an electron donor, the second-order rate constant for the formation of Compound II increased from 7.0·103 M−1·s−1 at pH 6.0 to 1.0·105 M−1·s−1 at pH 4.5. At lower pH values the rate of Compound II formation no longer followed an exponential relationship and the steady-state spectral properties differed to those recorded in the presence of ferrocyanide. Our data support a model of enzyme catalysis in which veratryl alcohol is oxidized in one-electron steps and strengthen the view that veratryl alcohol oxidation involves a substrate-modified Compound II intermediate which is rapidly reduced to the native enzyme.  相似文献   

16.
The thermally allowed electrocyclic reaction syn-cyclophanediene (CPD) to dihydropyrene (DHP) was compared with the disallowed thermal electrocyclic reaction in anti CPD through density functional theory (DFT) calculations at the B3LYP/6-31?+?G(d) level. Moreover, the results were also compared with the electrocyclization of 1,3,5 hexatriene to 1,3-cyclohexadiene . The Woodward-Hoffmann (W-H) allowed thermal reaction in syn CPD 11 has a calculated activation barrier of 6.23 kcal mol?1, compared with 29 kcal mol?1 for the electrocyclization of 1,3,5 hexatriene to 1,3-cyclohexadiene. The enhanced acceleration of electrocyclization is believed to arise from geometrically enforced spatially aligned termini of the hexatriene. Substituents at the electrocyclic terminus of cyclophanediene significantly affected (up to three fold) the activation barriers. Mono-substitution of CPD has substituent dependent acceleration or deceleration whereas di-substitution always increased the activation barrier. The activation barrier for electrocyclization in 33 is 4.44 kcal mol?1, which is the lowest activation barrier for any thermal electrocyclic reaction. Cyclophanedienes (CPDs) substituted with electron-rich substituents cyclized with high activation barriers and vice versa, a phenomenon significantly different from electrocyclic reaction of 1,3,5-hexatriene where no such trend is traceable. Comparison of W-H allowed and forbidden electrocyclization in syn and anti CPDs, respectively, revealed quite similar electronic demand, although the transition states are different in nature. The transition state for a W-H forbidden reaction is biradicaloid, with most of the spin density at the electrocyclic termini; however, the transition state for a W-H allowed reaction has no such contribution. We also believe that this is the first study of its type, where W-H allowed and forbidden reactions are compared on a similar set of molecules, and compared for electronic effect through substituents.  相似文献   

17.
Combining quantum-mechanical (QM) calculations with quantum theory of atoms in molecules (QTAIM) and using the methodology of sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), we showed for the first time that the biologically important A?A* base pair (Cs symmetry) formed by the amino and imino tautomers of adenine (A) tautomerizes via asynchronous concerted double proton transfer (DPT) through a transition state (TS), which is the A+?A? zwitterion with the separated charge, with Cs symmetry. The nine key points, which can be considered as electron-topological “fingerprints” of the asynchronous concerted A?A*?A*?A tautomerization process via the DPT, were detected and completely investigated along the IRC of the A?A*?A*?A tautomerization. Based on the sweeps of the H-bond energies, it was found that intermolecular antiparallel N6Н?N6 (7.01 kcal mol?1) and N1H?N1 (6.88 kcal mol?1) H-bonds are significantly cooperative and mutually reinforce each other. It was shown for the first time that the A?A*?A*?A tautomerization is assisted by the third C2H?HC2 dihydrogen bond (DHB), which, in contrast to the two others N6H?N6 and N1H?N1 H-bonds, exists within the IRC range from ?2.92 to 2.92 Å. The DHB cooperatively strengthens, reaching its maximum energy 0.42 kcal mol?1 at IRC?=??0.52 Å and minimum energy 0.25 kcal mol?1 at IRC?=??2.92 Å, and is accompanied by strengthening of the two other aforementioned classical H-bonds. We established that the C2H?HC2 DHB completely satisfies the electron-topological criteria for H-bonding, in particular Bader’s and all eight “two-molecule” Koch and Popelier’s criteria. The positive value of the Grunenberg’s compliance constant (5.203 Å/mdyn) at the TSA?A*?A*?A proves that the C2H?HC2 DHB is a stabilizing interaction. NBO analysis predicts transfer of charge from σ(C2–H) bonding orbital to σ*(H–C2) anti-bonding orbital; at this point, the stabilization energy E(2) is equal to 0.19 kcal mol?1 at the TSA?A*?A*?A.  相似文献   

18.
Nuclear magnetic resonance line-widths data have been used to determine the rate of solvent exchange from the first coordination sphere of ferro-and ferriprotoporphyrin(IX) dimethylester (Fe-PPD) in pyridine/chloroform. The average values of kinetic parameters for pyridine (PY) exchange indicate an SN2 mechanism tor Fe(III)-PPD(ΔH&;#; = 36 kJ · mol−1 ; ΔS&;#; = −53 J·mol−1K−1; TM(298 K) = 0.07 msec) and an SNI mechanism for Fe(II)-PPD (ΔH&;#; = 67 kJ·mol−1; ΔS&;#; = 42 J · mol−1K−1; TM(298 K) = 0.06 msec). Parallel to the accelerated ligand exchange rate at rising temperatures a redistribution of the electrons causing a transition of the metal porphyrin from the low-spin state to the high-spin state is observed. Enthalpy and entropy of the thermodynamic equilibrium between low- and high-spin Fe-PPD have been determined from experimental values of the average magnetic moment. A mean lifetime of low-spin Fe(III)-PPD was estimated from line. widths changes (TL→H(298 K)≈ 20 msec) and the corresponding activation parameters have been obtained (ΔH&;#;L→H(298 K) = 26 kJ · mol−1; ΔS&;#;L→H(298K) = −125 J · mol−1K−1).  相似文献   

19.
A density functional theory (DFT) study was performed to explore the mechanisms of the acid-catalyzed decarboxylation reaction of salicylic acids using the B3LYP method with 6-31++G(d,p) basis set in both gas phase and aqueous environment. The α-protonated cation of carboxylate acid was formed during the decarboxylation process in acidic conditions, and the presence of hydrogen ions promotes decarboxylation greatly by significantly decreasing the overall reaction energy barriers to 20.98 kcal mol?1 in gas phase and 20.93 kcal mol?1 in water, respectively. The hydrogen in the α-carbon came directly from the acid rather than from the carboxyl group in neutral state. Compared with the reaction in gas phase, water in aqueous state causes the reaction to occur more easily. Substituents of methyl group, chlorine and fluorine at the ortho-position to the carboxyl of salicylic acid could further lower the decarboxylation energy barriers and facilitate the reaction.  相似文献   

20.
The ligand exchange reaction SbCl5·L + *L⇌ SbCl5·*L + L has been studied in CH2Cl2 and (CHCl2)2 as a function of temperature and of pressure by using 1H NMR. First order rate laws, positive activation entropies ranging from +9.8 to +37.3 cal K−1 mol−1, positive activation volumes from +18.2 to +30.0 cm3 mol−1 and a linear free energy relationship of slope -1.09 ± 0.06 have been observed for a series of L including nitriles, ethers, amides and -PO donor ligands. It is concluded that a limiting dissociative, D, mechanism exists for the whole series of ligand exchange reactions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号