首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electron transport in cytochromes P-450 by covalent switching.   总被引:1,自引:0,他引:1  
The mechanism of electron transfer in cytochrome P-450cam is presented in terms of a covalent switching mechanism. We present a model of putidaredoxin built by homology, which helps explain protein-protein interactions. The mechanism is general enough to account for the genetic variations found in the superfamily of cytochromes P-450. The detail should assist in the design of novel P-450 inhibitors and may have wider implications. The sequence analysis supports our protein model, and highlights the role of cystein and aromatic residues in electron-transport mechanisms. Eukaryotic cytochromes P-450 appear to have evolved their own intramolecular tryptophan electron-transfer mediator, unlike prokaryotic P. putida P-450cam, which still relies upon the C-terminal tryptophan of its attendant electron-transport protein, putidaredoxin. On this basis our protein model is capable of rationalizing the transfer of electrons from NADH to the active site of P-450. At the electronic level the covalent switching that transfers pairs of electrons not only provides a plausible mechanism, but may also have ramifications in a wider context.  相似文献   

2.
3.
The function of the cytochromes in electron transport from NADH to oxygen in aerobically grown Proteus mirabilis has been determined. 77K-Spectra of cytoplasmic membrane suspensions, frozen while catalyzing electron transport from NADH to oxygen, in the presence as well as in the absence of 2-n-heptyl-4-hydroxyquinoline-N-oxide, have been recorded. Analysis of these 77K-spectra revealed that cytochrome b-563 (E'0 = +140 mV), cytochrome b-556 (E'0 = +140 mV) [or alternatively cytochrome b-563/556 (E'0 = +140 mV)] and cytochrome b-557 (E'0 = +50 mV) may function in a Q or b-cycle. The function of cytochrome c-549 (E'0 = +75 mV), which seems to be present only in a very low concentration, and cytochrome b-556 (E'0 = -105 mV), which reacts very slowly to the addition of NADH and oxygen, remains unclear. Cytochrome o, the main oxidase of aerobically grown P. mirabilis cells, can not be detected by the methods described above. Only when the reduced form of cytochrome o is liganded with carbon monoxide a specific alpha-band can be detected at 569 nm at 25 degrees C and 565 nm at 77K.  相似文献   

4.
Electron self-exchange has been measured by an NMR technique for cytochromes c551 from Pseudomonas aeruginosa and Pseudomonas stutzeri. The rate for P. aeruginosa cyt c551 is 1.2 x 10(7) M-1 s-1 at 40 degrees C in 50 mM phosphate at pH 7. For P. stutzeri, under the same conditions, the rate is 4 x 10(7) M-1 s-1. For both cytochromes, the rate was independent of ionic strength up to 0.5 M in added NaC1, the enthalpy of activation was 20 +/- 4 kcal mol-1, and the entropy of activation was 38 +/- 10 cal mol-1 deg-1.  相似文献   

5.
The oxidized cytochrome c(2) from the purple phototrophic bacteria, Rhodobacter sphaeroides and Rhodobacter capsulatus, bind the neutral species of imidazole (K(a) = 1440 +/- 40 M(-1)) 50 times more strongly than does horse mitochondrial cytochrome c (K(a) = 30 +/- 1 M(-1)). The kinetics of imidazole binding are consistent with a change in rate-limiting step at high ligand concentrations for all three proteins. This is attributed to a conformational change leading to breakage of the iron-methionine bond which precedes imidazole binding. The three-dimensional structure of the Rb. sphaeroides cytochrome c(2) imidazole complex (Axelrod et al., Acta Crystalogr. D50, 596-602) supports the view that the conformational changes are essentially localized to approximately seven residues on either side of the ligated methionine and there is a hydrogen bond between the Phe 102 carbonyl, an internal water, and the bound imidazole. Insertions and deletions in this region of cytochrome c(2), the presence of a proline near the methionine, and the smaller size of the dynamic region of horse cytochrome c suggest that the stabilizing hydrogen bond is not present in horse cytochrome c, hence, the dramatic difference in affinity for imidazole. The kinetics of ligand binding do not correlate with either the strength of the iron-methionine bond as measured by the pK of the 695-nm absorption band or the overall stability of the cytochromes studied. However, the very similar imidazole binding properties of the two cytochromes c(2) indicate that the Rb. sphaeroides cytochrome c(2)-imidazole complex structure is an excellent model for the corresponding Rb. capsulatus cytochrome c(2) complex. It is notable that the movement of the peptide chain in the vicinity of the ligated methionine has been preserved throughout evolution and suggests a role in the function of c-type cytochromes.  相似文献   

6.
C-type cytochromes are a structurally diverse group of haemoproteins, which are related by the occurrence of haem covalently attached to a polypeptide via two thioether bonds formed by the vinyl groups of haem and cysteine side chains in a CXXCH peptide motif. Remarkably, three different post-translational systems for forming these cytochromes have been identified. The evolution of both the proteins themselves and the biogenesis systems poses many questions to which answers are currently being sought. In this article we review the progress that has been made in understanding the need for covalent attachment of haem to proteins in cytochromes c and the complex systems involved in their formation.  相似文献   

7.
Two cytochromes of the C-type, c-554 and c-549, were isolated from the soluble fraction of an extreme thermophile, Thermus thermophilus HB8. Highly purified cytochrome c-554 had absorption maxima at 554, 522, and 417 nm in the reduced state, and at 410 nm in the oxidized state. The alpha-band of the reduced state resembled that of "split-alpha" cytochromes. The isoelectric point was at pH 4.9, and the molecular weight was about 29,000. Cytochrome c-549, partially purified, had absorption maxima a6 549,520, and 416 nm in the reduced form, and at 408 nm in the oxidized form. The molecular weight was about 25,000. Both were slowly auto-oxidizable, and did not combine with CO.  相似文献   

8.
9.
The NADPH oxidase is the main weapon of phagocytic white blood cells that are the first line of defence of our body against invading pathogens, and patients lacking a functional oxidase suffer from severe and recurrent infections. The oxidase is a multisubunit enzyme complex that transports electrons from cytoplasmic NADPH to molecular oxygen in order to generate superoxide free radicals. Electron transport across the plasma membrane is electrogenic and is associated with the flux of protons through voltage-activated proton channels. Both proton and electron currents can be recorded with the patch-clamp technique, but whether the oxidase is a proton channel or a proton channel modulator remains controversial. Recently, we have used the inside-out configuration of the patch-clamp technique to record proton and electron currents in excised patches. This approach allows us to measure the oxidase activity under very controlled conditions, and has provided new information about the enzymatic activity of the oxidase and its coupling to proton channels. In this chapter I will discuss how the unique characteristics of the electron and proton currents associated with the redox activity of the NADPH oxidase have extended our knowledge about the thermodynamics and the physiological regulation of this remarkable enzyme.  相似文献   

10.
11.
Periplasmic extract from Desulfovibrio desulfuricans (NCIMB 8372) was found to contain two different c-type cytochromes. One is tetraheme cytochrome c3 and the other is monoheme cytochrome c553. Cytochrome c3 could be purified by a procedure involving only one chromatographic step, whereas cytochrome c553 required several such steps. Cytochrome c3 was found to have a relative molecular mass of 14300 and an isoionic point higher than 9. Analysis of the redox potentials indicated one heme at -260 mV and three hemes around -330 mV. Cytochrome c553 had a relative molecular mass of 7200, an isoionic point higher than 9 and a redox potential of 0 mV.  相似文献   

12.
Green sulfur bacteria and heliobacteria are strictly anaerobic phototrophs that have homodimeric type 1 reaction center complexes. Within these complexes, highly reducing substances are produced through an initial charge separation followed by electron transfer reactions driven by light energy absorption. In order to attain efficient energy conversion, it is important for the photooxidized reaction center to be rapidly rereduced. Green sulfur bacteria utilize reduced inorganic sulfur compounds (sulfide, thiosulfate, and/or sulfur) as electron sources for their anoxygenic photosynthetic growth. Membrane-bound and soluble cytochromes c play essential roles in the supply of electrons from sulfur oxidation pathways to the P840 reaction center. In the case of gram-positive heliobacteria, the photooxidized P800 reaction center is rereduced by cytochrome c-553 (PetJ) whose N-terminal cysteine residue is modified with fatty acid chains anchored to the cytoplasmic membrane.  相似文献   

13.
14.
15.
16.
Seven microbial and one mammalian species of cytochrome c have been reacted with O-methylisourea to convert lysine residues to homoarginines containing enriched 13C. This set of guanidinated cytochromes has been assayed for electron transport reactivity and the nuclear magnetic resonance spectra of incorporated label have been obtained. The set consisted of c-type cytochromes from horse, Saccharomyces cerevisiae, Candida krusei, Paracoccus denitrificans, Pseudomonas aeruginosa, Rhodospirillum rubrum, Rhodopseudomonas capsulata, and Rhodopseudomanas spheroides. All derivatives demonstrated high electron transport reactivity with cytochrome oxidases; at some concentrations this rate was 100% or higher compared to corresponding native rates. All labeled ferricytochrome spectra followed a common pattern giving about five resolved or partially resolved resonance peaks. Two of these, at approximately 158.1 and 157.3 parts per million, correspond to single carbon sites. They have been assigned to labeled lysine 27 and lysine 79 (horse numbering), respectively, on the basis of sequence comparisons and an approximate chemical shift calculation. Labeled ferrocytochrome spectra were obtained and shown to be more diverse than the set of ferric spectra. Poly-[13C]homoarginine was prepared and shown to be an inhibitor of the horse cytochrome c-cytochrome oxidase reaction but an activator for the reactions of Paracoccus cytochrome c550. Relaxation measurements indicated that polyhomoarginine forms a complex with both cytochromes c.  相似文献   

17.
Electron probe analysis of calcium transport by small intestine   总被引:3,自引:0,他引:3       下载免费PDF全文
Calcium transport in small intestine of rat and chick has been studied at the cellular level using the electron probe X-ray microanalyzer. Tissues were examined directly after removal as well as after incubation in a calcium solution. In both preparations, discrete calcium localizations were found associated with intracellular and extracellular goblet cell mucus. The in vitro preparations showed calcium in transit across the absorptive epithelium in discrete localizations. Although the primary path of transport was along lateral cell borders, some localizations were found in the cytoplasm in a supranuclear position. The effect of vitamin D depletion and repletion was to decrease and increase, respectively, the number of calcium localizations in transit across the epithelium. These results suggest that calcium is transported while in a sequestered form and indicate that goblet cell mucus plays a role in this transport process.  相似文献   

18.
19.
20.
Glyoxysomes were isolated from germinating castor bean endosperm by equilibrium density gradient centrifugation in a vertical rotor. To recover the membranes, glyoxysome ghosts were prepared by osmotic shock and then subjected to differential centrifugation. The glyoxysomal membranes and the endoplasmic reticulum (ER), isolated by the same methods, were assayed for electron transport components. Both organelles contained NADH ferricyanide reductase, NADH cytochrome c reductase, and cytochromes b5 and P-420. The ER also contained cytochrome P-450. Pyridine hemochrome derivatives of the organelle membranes and hemin produced coincident difference spectra, indicating that only b-type cytochromes are present in glyoxysomal and ER membranes. The maximal activities of ferricyanide reductase and cytochrome c reductase in glyoxysomes, 2.19 and 0.33 μmol min?1 mg membrane protein?1, respectively, represent 30 and 18% of the activities in the ER. The cytochrome b5 content of the glyoxysomal membrane is 0.108 nmol mg?1, 31% of the level found in ER. The reductases from both organelles were resistant to solubilization by salt (0.2 m KCl) and were easily solubilized by detergent (1% Triton X-100). Flavin analysis of the organelles from germinating castor beam endosperm confirmed spectral evidence that the flavin content of glyoxysomes is quite high, 100 pmol mg protein?1, more than twice that of mitochondria. Three-quarters of the glyoxysomal flavin was solubilized by KCl, but even after salt treatment the glyoxysomal membrane flavin content, 98 pmol mg membrane protein?1, is three times greater than that of the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号