首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The amphibian enzyme ADH8, previously named class IV-like, is the only known vertebrate alcohol dehydrogenase (ADH) with specificity towards NADP(H). The three-dimensional structures of ADH8 and of the binary complex ADH8-NADP(+) have been now determined and refined to resolutions of 2.2A and 1.8A, respectively. The coenzyme and substrate specificity of ADH8, that has 50-65% sequence identity with vertebrate NAD(H)-dependent ADHs, suggest a role in aldehyde reduction probably as a retinal reductase. The large volume of the substrate-binding pocket can explain both the high catalytic efficiency of ADH8 with retinoids and the high K(m) value for ethanol. Preference of NADP(H) appears to be achieved by the presence in ADH8 of the triad Gly223-Thr224-His225 and the recruitment of conserved Lys228, which define a binding pocket for the terminal phosphate group of the cofactor. NADP(H) binds to ADH8 in an extended conformation that superimposes well with the NAD(H) molecules found in NAD(H)-dependent ADH complexes. No additional reshaping of the dinucleotide-binding site is observed which explains why NAD(H) can also be used as a cofactor by ADH8. The structural features support the classification of ADH8 as an independent ADH class.  相似文献   

2.
The activity of NAD+ and NADP+-linked aldehyde dehydrogenases has been investigated in yeast cells grown under different conditions. As occurs in other dehydrogenase reactions the NAD(P)+-linked enzyme was strongly repressed in all hypoxic conditions; nervetheless, the NADP+-linked enzyme was active. The results suggest that the NAD(P)+ aldehyde dehydrogenase is involved in the oxidation of ethanol to acetyl-CoA, and that when the pyruvate dehydrogenase complex is repressed the NADP+-linked aldehyde dehydrogenase is operative as an alternative pathway from pyruvate to acetyl-CoA: pyruvate leads to acetaldehyde leads to acetate leads to acetyl-Coa. In these conditions the supply of NADPH is advantageous to the cellular economy for biosynthetic purposes. Short term adaptation experiments suggest that the regulation of the levels of the aldehyde dehydrogenase-NAD(P)+ takes place by the de novo synthesis of the enzyme.  相似文献   

3.
4.
5.
This study describes the development and application of a bioaffinity chromatographic system for the one-step purification of an NADP(+)-dependent secondary alcohol dehydrogenase from the obligate anaerobe, Thermoanaerobacter brockii (TBADH, EC 1.1.1.2). The general approach is based upon improving the selectivity of immobilized cofactor derivatives (general ligand approach to bioaffinity chromatography) through using soluble enzyme-specific substrate analogues in irrigants to promote biospecific adsorption (the kinetic locking-on tactic). Specifically, the following is described: Evaluation of 8'-azo-linked, C(8)-linked, N(1)-linked, and N(6)-linked immobilized NADP(+) derivatives for use with the kinetic locking-on strategy for bioaffinity purification of TBADH; evaluation of 2', 5'-ADP as a stripping ligand for TBADH bioaffinity purifications using an 8'-azo-linked immobilized NADP(+) derivative in the locking-on mode; and application of the developed bioaffinity chromatographic system to the purification of TBADH from a crude cellular extract. Surprizingly, of the four immobilized NADP(+) derivatives investigated, only the 8'-azo-linked immobilized NADP(+) derivative proved effective for TBADH affinity purification when used in conjunction with pyrazole (a competitive inhibitor of TBADH activity) as the locking-on ligand. This is in contrast to other NADP(+)-dependent dehydrogenases where the immobilized N(6)-linked cofactor proved to be suitable. While the one-step purification of TBADH to electrophoretic homogeneity is described in the present study (92% yield), results from the model chromatographic studies point to improvements that could be made to the immobilized cofactor derivative to improve its suitability for TBADH bioaffinity purification and to facilitate future large scale protein purification operations.  相似文献   

6.
7.
8.
Class II alcohol dehydrogenase (ADH2) represents a highly divergent class of alcohol dehydrogenases predominantly found in liver. Several species variants of ADH2 have been described, and the rodent enzymes form a functionally distinct subgroup with interesting catalytic properties. First, as compared with other ADHs, the catalytic efficiency is low for this subgroup. Second, the substrate repertoire is unique, e.g. rodent ADH2s are not saturated with ethanol as substrate, and while omega-hydroxy fatty acids are common substrates for the human ADH1-ADH4 isoenzymes, including ADH2, these compounds function as inhibitors rather than substrates. The recently determined structure of mouse ADH2 reveals a novel substrate-pocket topography that accounts for the observed substrate specificity and may, therefore, be important for the exploration of orphan substrates of ADH2. It is possible to improve the catalytic efficiency of mouse ADH2 by an array of mutations at position 47. Residue Pro47 of the wild type ADH2 enzyme seems to strain the binding of coenzyme, which prevents a close approach between the coenzyme and substrate for efficient hydrogen transfer. Based on crystallographic and mechanistic investigations, the effects of residue replacements at position 47 are multiple, affecting the distance for hydride transfer, the pK(a) of the bound alcohol substrate as well as the affinity for coenzyme.  相似文献   

9.
meso-Diaminopimelate dehydrogenase (meso-DAPDH) catalyzes the reversible NADP+-dependent oxidative deamination of meso-2,6-diaminopimelate (meso-DAP) to produce l-2-amino-6-oxopimelate. meso-DAPDH is divided into two major clusters, types I and II, based on substrate specificity and structural characteristic. Here, we describe a novel type II meso-DAPDH from Thermosyntropha lipolytica (TlDAPDH). The gene encoding a putative TlDAPDH was expressed in Escherichia coli cells, and then the enzyme was purified 7.3-fold to homogeneity from the crude cell extract. The molecule of TlDAPDH seemed to form a hexamer, which is the typical structural characteristic of type II meso-DAPDHs. The purified enzyme exhibited oxidative deamination activity toward meso-DAP with both NADP+ and NAD+ as coenzymes. TlDAPDH exhibited reductive amination activity of corresponding 2-oxo acid to produce d-amino acid. In particular, the productivities for d-aspartate and d-glutamate have not been reported in the type II enzymes. The optimum pH and temperature for oxidative deamination of meso-DAP were 10.5 and 55°C, respectively. TlDAPDH retained more than 80% of its activity after incubation for 30 min at temperatures between 50°C and 65°C and in the pH range of 4.5–9.5. Moreover, the coenzyme and substrate recognition mechanisms of TlDAPDH were elucidated based on a multiple sequence alignment and the homology model. The results of these analyses suggested that the molecular mechanisms for coenzyme and substrate recognition of TlDAPDH were similar to those of meso-DAPDH from S. thermophilum, which is the representative type II enzyme. Based on the kinetic characteristics and structural comparison, TlDAPDH was considered to be a novel type II meso-DAPDH.  相似文献   

10.
The protozoan parasite Entamoeba histolytica is an ancient eukaryotic cell that shows morphologically atypical organelles and differs metabolically from higher eukaryotic cells. The aim of this study was to determine the subcellular localization of ameba NAD+-dependent alcohol dehydrogenase (ADH2). The enzyme activity was present in soluble and mainly in particulate material whose density was 1.105 in a sucrose gradient. By differential centrifugation, most of the ADH activity sedimented at 160,000 g (160,000-g pellet), similar to the Escherichia coli polymeric ADHE. In the Coomassie staining of the 160,000-g pellet analyzed by electrophoresis, a 96-kDa protein was more prominent than in other fractions; this band was recognized by antibodies against Lactococcus lactis ADHE. By gold labeling, the antibodies recognized the granular material that mainly constitutes the 160,000-g pellet and a material that sedimented along with the internal membrane vesicles. By negative staining, the 160,000-g fraction showed helical rodlike structures with an average length of 103 nm; almost no membrane vesicles were observed in this pellet. In internal membrane fractions, no rodlike structures were found, but protomerlike round structures were observed. These results indicate that the main amebic NAD+-dependent ADH2 activity is naturally organized as rodlike helical particles, similar to bacterial ADHE. Detection of ADH2 in membrane fractions might be explained by cosedimentation of the multimeric ADH during membrane purification.  相似文献   

11.
A new NADP(H)-dependent alcohol dehydrogenase (the YCR105W gene product, ADHVII) has been identified in Saccharomyces cerevisiae. The enzyme has been purified to homogeneity and found to be a homodimer of 40 kDa subunits and a pI of 6.2-6.4. ADHVII shows a broad substrate specificity similar to the recently characterized ADHVI (64% identity), although they show some differences in kinetic properties. ADHVI and ADHVII are the only members of the cinnamyl alcohol dehydrogenase family in yeast. Simultaneous deletion of ADH6 and ADH7 was not lethal for the yeast. Both enzymes could participate in the synthesis of fusel alcohols, ligninolysis and NADP(H) homeostasis.  相似文献   

12.
Abstract

NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP+-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46–48 population doubling level (PDL) and then gradually decreased at later PDL. 2′,7′-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.  相似文献   

13.
The constitutive NADP+-dependent alcohol dehydrogenase from Acinetobacter calcoaceticus can be accumulated about 50 fold in 3 purification steps. The end-product shows in the analytical polyacrylamide gel electrophoresis only one active enzyme band. The molecular weight of the enzyme was determined to be 235,000 by gel chromatography on Sephadex G 200, the smallest subunit shows a molecular weight of 61 000 on SDS electrophoresis. The isoelectric point is at 5.84. The KM values determined with primary aliphatic alcohols diminish in the range of the homologous order (C2--C10) with growing chain length. The KM value for hexanal is about 20 fold less than that for 1-hexanol.  相似文献   

14.
NAD+-dependent retinol dehydrogenase in liver microsomes   总被引:1,自引:0,他引:1  
A microsomal NAD+-dependent retinol dehydrogenase is being described with optimal activity at physiological pH. The enzyme was present in liver microsomes of rats and also in a strain of deermice which lacks the cytosolic retinol dehydrogenase. Unlike the latter enzyme, the microsomal retinol dehydrogenase was not inhibited by either ethanol or 4-methylpyrazole; its activity was insensitive to CO and not oxygen dependent, in contradistinction with that of the microsomal cytochrome P-450 and NADPH-dependent retinol oxidase. Chronic ethanol consumption resulted in an increased activity of the microsomal retinol dehydrogenase which may contribute to hepatic retinol depletion, especially in view of the insensitivity of the enzyme to ethanol inhibition.  相似文献   

15.
The NAD(+)-dependent alcohol dehydrogenase (EC 1.1.1.1) from the thermoacidophilic archaebacterium Sulfolobus solfataricus, DSM1617 strain (SSADH), has been purified and characterized. Its gene has been isolated by screening two S. Solfataricus genomic libraries using oligonucleotide probes. The encoding sequence consists of 1041 base pairs, and it shows a high preference for codons ending in T or A. The primary structure, determined by peptide and gene analysis, consists of 347 amino acid residues, yielding a molecular weight of 37,588. A level of identity of 24-25% was found with the amino acid sequences of horse liver, yeast, and Thermoanaerobium brockii alcohol dehydrogenases. The coenzyme-binding and catalytic and structural zinc-binding residues typical of eukaryotic alcohol dehydrogenases were found in SSADH with the difference that one out of the four structural zinc-binding Cys residues is substituted by Glu. The protein contains four zinc atoms per dimer, two of which are removed by chelating agents with a concomitant loss of structural stability.  相似文献   

16.
The expression of the recombinant wild-type NAD+- and mutant NADP+-dependent formate dehydrogenases (EC 1.2.1.2., FDH) from the methanol-utilizing bacterium Pseudomonas sp. 101 in Escherichia coli cells has been improved to produce active and soluble enzyme up to the level of 50% of total soluble proteins. The cultivation process for E. coli/pFDH8a and E. coli/pFDH8aNP cells was optimized and scaled up to a volume of 100 L. A downstream purification process has been developed to produce technical grade NAD+- and NADP+-specific formate dehydrogenases in pilot scale, utilizing extraction in aqueous two-phase systems.  相似文献   

17.
18.
A study was made of the NAD+-dependent alanine dehydrogenase (EC 1.4.1.1) elaborated by the methylotrophic bacterium Pseudomonas sp. strain MA when growing on succinate and NH4Cl. This enzyme was purified 400-fold and was found to be highly specific for NH3 and NAD+; however, hydroxypyruvate and bromopyruvate, but not alpha-oxoglutarate or glyoxylate, could replace pyruvate to a limited extent. The Mr of the native enzyme was shown to be 217,000, and electrophoresis in SDS/polyacrylamide gels revealed a minimum Mr of 53,000, suggesting a four-subunit structure. The enzyme, which has a pH optimum of 9.0, operated almost exclusively in the aminating direction in vitro. It was induced by NH3 or by alanine, and was repressed by growth on methylamine or glutamate. It is suggested that this enzyme has two roles in this organism, namely in NH3 assimilation and in alanine catabolism.  相似文献   

19.
20.
Carbonyl compounds such as alpha-ketoglutarate, pyruvate, oxaloacetate, butyraldehyde, acetaldehyde or acetone react with NAD or NADP to give adducts. Binding studies of adducts to dehydrogenases are performed by means of ultraviolet differential spectroscopy, circular dichroism and spectrofluorimetry. The dehydrogenases show a high degree of binding specificity toward the adducts which contain their specific oxidized substrate and their specific coenzyme. The high selectivity of the dehydrogenases for adducts is evidenced by binding studies of NAD(P)-pyruvate and NAD(P)-alpha-ketoglutarate adducts on glutamate dehydrogenase at pH 7.6 and 8.9. Evidence is presented showing that adducts bind to the active site of the enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号