共查询到20条相似文献,搜索用时 0 毫秒
1.
Three homeobox genes, one from Drosophila melanogaster (Drosophila Hmx gene) and two from mouse (murine Hmx2 and Hmx3) were isolated and the full-length cDNAs and corresponding genomic structures were characterized. The striking homeodomain similarity encoded by these three genes to previously identified genes in sea urchin, chick and human, as well as the recently cloned murine Hmx1 gene, and the low homology to other homeobox genes indicate that the Hmx genes comprise a novel gene family. The widespread existence of Hmx genes in the animal kingdom suggests that this gene family is of ancient origin. Drosophila Hmx was mapped to the 90B5 region of Chromosome 3 and at early embryonic stages is primarily expressed in distinct areas of the neuroectoderm and subsets of neuroblasts in the developing fly brain. Later its expression continues in rostral areas of the brain in a segmented pattern, suggesting a putative role in the development of the Drosophila central nervous system. During evolution, mouse Hmx2 and Hmx3 may have retained a primary function in central nervous system development as suggested by their expression in the postmitotic cells of the neural tube, as well as in the hypothalamus, the mesencephalon, metencephalon and discrete regions in the myelencephalon during embryogenesis. Hmx1 has diverged from other Hmx members by its expression in the dorsal root, sympathetic and vagal nerve (X) ganglia. Aside from their expression in the developing nervous system, all three Hmx genes display expression in sensory organ development, and in the adult uterus. Hmx2 and Hmx3 show identical expression in the otic vesicle, whereas Hmx1 is strongly expressed in the developing eye. Transgenic mouse lines were generated to examine the DNA regulatory elements controlling Hmx2 and Hmx3. Transgenic constructs spanning more than 31 kb of genomic DNA gave reproducible expression patterns in the developing central and peripheral nervous systems, eye, ear and other tissues, yet failed to fully recapitulate the endogenous expression pattern of either Hmx2 or Hmx3, suggesting both the presence and absence of certain critical enhancers in the transgenes, or the requirement of proximal enhancers to work synergistically. 相似文献
2.
We isolated Veph, a novel gene encoding a pleckstrin homology (PH) domain-containing protein from a mouse. Veph was strongly expressed in the embryonic brain, and its expression level gradually decreased in later stages. In situ hybridization analysis of sectioned embryo brains revealed that Veph was expressed exclusively in the ventricular zone. We then isolated a zebrafish orthologue of Veph (zVeph). As observed in the mouse gene, zVeph was expressed in the ventricular zone of developing brain and spinal cord. Blockage of zVeph expression by injection of zVeph-specific morpholino antisense oligo into zebrafish fertilized eggs resulted in a defect in the midbrain-hindbrain boundary and otic vesicle formation, suggesting the important function of zVeph in central nervous system (CNS) development. On the other hand, homozygous knockout mice of Veph showed no significant defect in the CNS, pointing to possible different functions of Veph between the zebrafish and mouse. 相似文献
3.
Matsumoto M Saito T Takasaki J Kamohara M Sugimoto T Kobayashi M Tadokoro M Matsumoto S Ohishi T Furuichi K 《Biochemical and biophysical research communications》2000,272(2):576-582
We report here a novel family of G-protein coupled receptor (GPCR) which is extraordinarily conserved among vertebrate species. This family, designated SREB (Super Conserved Receptor Expressed in Brain), consists of at least three members, termed SREB1, SREB2, and SREB3. SREB members share 52-63% amino acid identity with each other and show relatively high similarity to previously known amine amine GPCRs (approximately 25% identity). Amino acid sequence identity between human and rat orthologues is 97% for SREB1 and 99% for SREB3, while the SREB2 sequence is surprisingly completely identical between the species. Furthermore, amino acid sequence of zebrafish SREB2 and SREB3 are 94 and 78% identical to mammal orthologues. Northern blot analysis revealed that SREB members are predominantly expressed in the brain regions and genital organs. Radiation hybrid analysis localized SREB1, SREB2, and SREB3 genes to different human chromosomes, namely 3p21-p14, 7q31 and Xp11, respectively. The high sequence conservation and abundant expression in the central nervous system suggest the existence of undiscovered fundamental neuronal systems consisting of SREB family members and their endogenous ligand(s). 相似文献
4.
Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast 'sublineages'), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages. 相似文献
5.
We describe the identification and detailed expression pattern of a second Drosophila Sox gene, SoxNeuro (SoxN), highly related to mammalian group B Sox1, 2, 3 genes. SoxN is expressed in a highly dynamic pattern during embyogenesis, being associated with the development of the central nervous system (CNS), from the early steps onwards. We present strong evidence that the early SoxN neuroectoderm expression is controlled by the zygotic dorso-ventral patterning genes (dpp, sog, brk, twi). 相似文献
6.
R D Shortridge J Yoon C R Lending B T Bloomquist M H Perdew W L Pak 《The Journal of biological chemistry》1991,266(19):12474-12480
7.
8.
9.
A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system 总被引:2,自引:0,他引:2
Leucine-rich repeat containing proteins are involved in protein-protein interactions and they regulate numerous cellular events during nervous system development and disease. Here we have isolated and characterized a new four-membered family of genes from human and mouse, named LRRTMs, that encode putative leucine-rich repeat transmembrane proteins. Human and mouse LRRTMs are highly conserved, and orthologous genes exist in other vertebrates but not in invertebrates. All LRRTMs, except LRRTM4, are located in the introns of different alpha-catenin genes, suggesting coevolution of these two gene families. We show by in situ hybridization and RT-PCR that LRRTM mRNAs are predominantly expressed in the nervous system and that each LRRTM possesses a specific, partially nonoverlapping expression pattern. The structure and expression profile of LRRTM mRNAs suggest that they may have a role in the development and maintenance of the vertebrate nervous system. 相似文献
10.
11.
Central nervous system, uterus, heart, and leukocyte expression of the LOXL3 gene, encoding a novel lysyl oxidase-like protein 总被引:3,自引:0,他引:3
A BLASTN search using the mouse lor-2 cDNA identified three overlapping ESTs (AI752772, AA852888, and R55706) in the GenBank database. These expressed sequence tags were assembled into a contig of 3121 nucleotides with an open reading frame of 2262 bp. The encoded putative polypeptide of 754 amino acids presented all structural characteristics of the lysyl oxidase (LOX) enzyme family, a copper-binding site with four histidyl residues, the lysyl and tyrosyl residues known to be involved in LOX enzyme in the formation of the quinone cofactor and surrounding sequences, and the cytokine receptor-like domain. In addition, four scavenger receptor cysteine-rich (SRCR) domains were found in the N-terminal region of the protein. The gene encoding this new cDNA, which we have referred to as human lysyl oxidase-like 3 (humanLOXL3), has been mapped to chromosome 2p13.3, overlapping at its 3' end the HtrA2 serine protease gene. The structure of the humanLOXL3 gene was deduced from the BAC clone bac91a19 sequence and contained 14 exons. The expression pattern of this new member of the LOX gene family appears to be different from that of the LOX and LOX-like genes, as the central nervous system, neurons, and also leukocytes expressed humanLOXL3. A BLASTN search of the human EST database indicated the presence of ESTs, corresponding to alternative splice variants of LOXL3, that lacked exon 5 and exon 8. The putative resulting protein retained the region encoding the structural and functional elements of the amine oxidase but the second and fourth SRCR domains were truncated and the potential BMP-1 cleavage site was not present. The presence of domains unrelated to the traditional amine oxidase activity is a strong indication that humanLOXL3 might fulfill other functions in addition to intrinsic enzyme activity. 相似文献
12.
We examined the expression of the iron regulatory proteins 1 and 2 (IRP1 and IRP2) in the brains of adult (4-6 months) CBA/J mice. Anti-IRP1 immunoreactivity was localized to cell bodies, including putative neurons and oligodendrocytes. In contrast, anti-IRP2 staining was prevalent throughout the neuropil of regions of the brain consistent with the central autonomic network (CAN) and mossy fibers emanating from hippocampal dentate granule cells. Essentially no staining for IRP2 was observed in the cerebellum in contrast to strong IRP1 immunoreactivity in Purkinje cells. Notably, cells within one vestibular nucleus exhibited staining by both IRP1 and IRP2. Our results suggest distinct roles for IRP1 and IRP2 in the regulation of iron homeostasis in the mammalian nervous system where IRP1 may provide a maintenance function in contrast to IRP2 that could participate in modulating proper CAN functions, including cardiopulmonary, gustatory as well as fine motor control. 相似文献
13.
《Gene》1997,184(2):285-290
The gene that encodes the dorsal switch protein (DSP1) has been isolated from a Drosophila melanogaster cosmid library. It is organized into seven exons and six introns. The relative position of the introns within the region coding for the high mobility group (HMG) domains are identical to those of vertebrate HMG 1/2 genes. The close similarity between DSP1 and HMG 1/2 genes strongly suggests that these genes derived from a common ancestral gene. DSP1 encodes, at least, two distinct mRNAs that differ in the length of their 5′-untranslated region and coding sequence. Detailed sequence analysis shows that alternative splicing of precursor mRNA gives rise to the two isoform mRNAs found in Drosophila cells. 相似文献
14.
We compare the expression patterns in Ciona intestinalis of three members of the Pax gene family, CiPax3/7, CiPax6 and Cipax2/5/8. All three genes are expressed in restricted patterns in the developing central nervous system. At the tailbud stage, CiPax3/7 is present in three patches in the brain and along the posterior neural tube, CiPax6 throughout the anterior brain and along the posterior neural tube and CiPax2/5/8 in a restricted region of the posterior brain. Double in situ hybridisations were used to identify areas of overlap between the expression of different genes. This showed that CiPax3/7 overlaps with the boundaries of CiPax6 expression in the anterior brain, and with CiPax2/5/8 in the posterior brain. The overlap between CiPax3/7 and CiPax2/5/8 is unlike that described in the ascidian Halocynthia rorezti. 相似文献
15.
16.
17.
18.
19.
A transposon-inserted mutant of Drosophila melanogaster was recently identified, and the larvae show no food preference (Ryuda and Hayakawa, 2005). To reveal the genetic mechanism underlying the preference change in this mutant, a large-scale oligo-DNA microarray screening was carried out to identify genes whose expression is different in control and mutant strains. We focused especially on hunger-driven changes in gene expression in the larval central nervous system (CNS) of both strains, because the state of food depletion should promote a feeding response due to changed expression of certain genes in the CNS. We identified 22 genes whose expression changed after starvation in either or both of the two strains. Quantitative RT-PCR analyses confirmed the expression changes in four genes, CG6271, CG6277, CG7953, and new glue 3 (ng3, encoding a putative structural molecule). CG6271 and CG6277 encode triacylglycerol lipase, and CG7953 produces a protein homologous to a juvenile hormone (JH) binding protein. The expression of these two groups of genes was enhanced in control strain larvae with a normal food preference but not in GS1189 strain larvae. Given that these genes contribute to mediating hunger-driven changes in food preference and intake in D. melanogaster larvae, the dysfunction of these key genes could cause the defect in food preference observed in GS1189-strain larvae. 相似文献