首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The uronic acid-containing glycosaminoglycans present in the brains of rat, monkey, chicken, sheep and rabbit were isolated into various fractions by combining the cetyl pyridinium procedure and DEAE-Sephadex column chromatography. The analyses of the fractions show that hyaluronic acid, chondroitin-4-sulphate, chondroitin-6-sulphate, heparan sulphate and a testicular hyaluronidase-resistant galactosamine-containing GAG are present in the brain of all the species studied. Hyaluronic acid is the major GAG (33–41 per cent). Chondroitin-4-sulphate (19–35 per cent), and heparan sulphate (11–19 per cent), are the next prominent GAGs, in all the species except chicken. The results indicate the similarity in the pattern of GAGs in the brain of all the species.  相似文献   

2.
Abstract— The uronic acid containing glycosaminoglycans (GAGs) were isolated from the brains of 1-year-old and 4-year-old kwashiorkor children and characterised by constituent analyses. A marked reduction is the total GAG concentration of brain was noticed in both cases of kwashiorkor. In the 1-year-old kwashiorkor brain, hyaluronic acid is the most predominant GAG (73.5 per cent) whereas heparan sulphate, chondroitin sulphates and low sulphated chondroitin sulphate constituted less than 10 per cent. In the 4-year-old kwashiorkor brain, the proportion of hyaluronic acid was 27.5 per cent, low sulphated chondroitin sulphate 31.2 per cent, chondroitin sulphates 28.3 per cent and heparan sulphate 10 per cent. This marked reduction in the concentration as well as qualitative changes in GAG in protein-calorie malnutrition as compared to the normal is discussed in relation to brain function.  相似文献   

3.
—Five distinct glycosaminoglycan fractions have been isolated from human brain of various age groups, by employing an improved fractionation procedure. Analysis of these fractions showed that human brain contains hyaluronic acid, chondroitin-4-sulphate, chondroitin-6-sulphate, dermatan sulphate, heparan sulphate and two unidentified low sulphated fractions. The pattern of variation of these compounds with age, indicates that they may be playing an important role in the process of myelination and brain maturation.  相似文献   

4.
—A sulphotransferase system of rat brain catalyses the transfer of sulphate from 3′-phosphoadenosine 5′-phosphosulphate to the low-sulphated glycosaminoglycans isolated from normal adult human brain. These were shown to be precursors of higher-sulphated glycosaminoglycans by DEAE-Sephadex column chromatography and paper electrophoresis. Nitrous acid degradation and mild acid hydrolysis of enzymically-sulphated fractions further confirmed the presence of heparan sulphate in human brain. A partially purified sulphotransferase preparation was obtained from neonatal human brain using chondroitin-4-sulphate as sulphate acceptor. This sulphotransferase catalyses the transfer of sulphate to the various uronic acid containing glycosaminoglycans. Heparan sulphate was the best sulphate acceptor followed by dermatan sulphate, N-desulphoheparin, chondroitin-4-sulphate and chondroitin-6-sulphate in decreasing order. Sulphotransferase obtained from 1-day-old rat, rabbit and guinea pig brain also had the same pattern of specificity towards various sulphate acceptors. This sulphotransferase catalyses both N-sulphation and O-sulphation. Studies on the sulphotransferase obtained from both rat and human brain of various age groups indicate that the ratio of N-sulphation: O-sulphation decreases as the brain matures.  相似文献   

5.
Jaya  P.  Kurup  P. A. 《Journal of biosciences》1986,10(4):487-493
Magnesium deficiency in rats has significant effect on the concentration of different glycosaminoglycans in the tissues, the nature of the change being different in different tissues. Total glycosaminoglycans, chondroitin-4-sulphate + chondroitin-6-sulphate and dermatan sulphate increased in the aorta while hyaluronic acid, heparan sulphate and heparin decreased. In the liver, total glycosaminoglycans, hyaluronic acid, chondroitin-4-sulphate + 6-sulphate and heparin decreased while total glycosamino-glycans and all the glycosaminoglycan fractions increased in the heart. In the kidney, total glycosaminoglycans showed no significant alteration, hyaluronic acid and heparin decreased while chondroitin-4-sulphate + 6-sulphate increased. Activity of biosynthetic enzymesviz. glucosamine-o-phosphate isomerase and UDPG-dehydrogenase showed decrease in the liver. The concentration of 3’-phosphoadenosine 5’-phosphosulphate, activity of sulphate activating system and sulphotransferase were also similarly altered in the liver in magnesium deficiency.  相似文献   

6.
An effect of hyperthyroidism on the composition and levels of glycosaminoglycans in the blood serum was studied. Glycosaminoglycans isolated from 1-ml blood samples were assayed with the following techniques: carbazole, electrophoretic and enzymatic. Separation and assay of particular GAG were made with bidirectional electrophoresis. Isomers of the remaining chondroitin sulphates were assayed enzymatically. Electrophoretograms of GAG in blood serum of healthy women have shown two fractions: low sulphate chondroitin sulphate and chondroitin-4-sulphate. The same fractions of GAG were found in blood serum of the female patients with hyperthyroidism. Mean concentration of GAG in the blood serum of hyperthyroid patients increased by 51%: low sulphate chondroitin sulphate and chondroitin-4-sulphate concentrations increased by 22% and 190% respectively. Chondroitin sulphates in the blood serum of both groups were degraded to unsaturated disaccharides not containing sulphur and unsaturated 4-sulphate disaccharides. Concentrations of unsaturated 4-sulphate and unsaturated sulphur-free disaccharides increased by 71% and 17% in hyperthyroidism. Observed changes in the blood serum GAG concentrations reflect changes in the connective tissue metabolism in hyperthyroidism.  相似文献   

7.
Abstract— The proximo-distal gradients for representative peptidases, peptidylpeptide hydrolases, and amino acids were measured in segments of peripheral nerve from invertebrates and vertebrates and in the lobster brain and ventral cord.
Crustacean nerve was characterized by a large pool of free amino acids totaling 100–200 μmoles/g wet wt. In lobster nerve, the principal free amino acid was aspartic acid which comprised 55 per cent of the free pool, whereas in the rat sciatic nerve it comprised only 5 per cent. The principal free amino acid in rat sciatic nerve was taurine (32 per cent of the pool) and in lobster brain glycine comprised 30 per cent of the pool. No consistent patterns emerged for the gradients along the nerves for amino acids and hydrolytic enzymes. In the leg nerve of the lobster, concentrations of aspartic acid and arginine were higher in the proximal region, and concentrations of proline and alanine were higher in the distal region. Concentrations of most amino acids were higher in the proximal regions of crab nerve, of lobster brain and ventral cord, and of rat sciatic nerve.
Rat sciatic nerve exhibited a pronounced proximo-distal increase in activity of aminopeptidase (Leu-Gly-Gly). In lobster leg nerve, activity of neutral proteinase was higher in the proximal segment, whereas activity of acid proteinase was higher in the distal segment. The best examples of proximo-distal gradients were found in lobster brain and ventral cord; activities of endopeptidases, arylamidases (Leu- and Arg-βNA), and aminopeptidase were higher in the supra-esophageal ganglia or cephalothorax segments than in the distal regions.  相似文献   

8.
Significant differences were observed in GAG metabolism of S. digitata and one of its intermediate vectors, C. quinquefasciatus. Distribution of different components such as hyaluronic acid, heparin-sulphate, chondroitin-4-sulphate, chondroitin-6-sulphate, dermatan sulphate and heparin was comparable in both. However, there were quantitative differences; the difference was marked in the activity of enzymes of GAG metabolism in presence and absence of diethylcarbamazine (DEC) a known antifilarial drug. While the activities of beta-galactosidase and beta-N-acetyl glucosaminidase of S. digitata systems showed an inhibition of 96.5 and 92.6% respectively, in the Culex systems they showed an inhibition of 93.3% and an activation of 18% respectively. The differences clearly indicate the existence of basic differences in GAG metabolism of vector and parasite.  相似文献   

9.
Abstract— Antiserum to BF protein isolated from bovine spinal roots has been used to study the distribution of the protein in other species and tissues.
Significant amounts of protein could be demonstrated in bovine, pig and rabbit peripheral nerve myelin. It was, however, scarcely detectable in guinea pig peripheral nerve myelin. There was BF protein in rabbit spinal cord as well as in peripheral nerve, but little or no BF protein in the liver, kidney, muscle or brain. BF protein in bovine spinal cord was localized in the myelin. The ratio of the BF protein to the encephalitogenic protein in the spinal cord myelin was around 0.15:1.0. BF protein was extractable from peripheral nerve myelin by saline as well as by acid solutions.
The circular dichroism spectrum of the BF protein in aqueous solution suggested that this protein contained a very large amount of β-structure. This structure was not considered to be the result of acid denaturation because the protein purified from the saline extract of peripheral nerve also showed a similar spectrum.  相似文献   

10.
Abstract— The levels of cerebrosides in neural tissues of adult mice were determined by densitometry of cerebroside spots on charred thin-layer chromatograms of washed total lipid extracts. Values for brain, spinal cord and peripheral nerves were 9·2, 33·0 and 36·9 mg/g of tissue, respectively. In adult Quaking mice these values were 6·4, 24 and 35 % of normal, respectively. Normal levels in brain, spinal cord and peripheral nerve of 21-day-old mice were 3·10, 13·5 and 17·8 mg/g, respectively. In 21-day-old Quaking mice the levels were reduced to 16,21 and 57% of normal, respectively. Biosynthesis of psychosine (galacto-sylsphingosine) by homogenates of Quaking brain, spinal cord and peripheral nerve, respectively, was 18, 24 and 42% of the normal rates at 21 days after birth and 16, 66 and 60% of the normal rates at 94 days. Our results suggest a quantitative relationship between the rate of formation of psychosine in vitro and the rate of accumulation of cerebrosides. in vivo. Biosynthesis of lactosylceramide was not reduced in homogenates of brain and spinal cord from Quaking mice. Cerebroside levels in normal and Quaking spinal cord and in normal brain increased 2- to 3-fold after 21 days of age, but in Quaking brain there was little or no increase.  相似文献   

11.
Action pattern of polysaccharide lyases on glycosaminoglycans   总被引:2,自引:1,他引:1  
The action pattern of polysaccharide lyases on glycosaminoglycansubstrates was examined using viscosimetric measurements andgradient polyacrylamide gel electrophoresis (PAGE). Heparinlyase I (heparinase, EC 4.2.2.7 [EC] ) and heparin lyase II (no ECnumber) both acted on heparin in a random endolytic fashion.Heparin lyase II showed an ideal endolytic action pattern onheparan sulphate, while heparin lyase I decreased the molecularweight of heparan sulphate more slowly. Heparin lyase III (heparitinase,EC 4.2.2.8 [EC] ) acted endolytically only on heparan sulphate anddid not cleave heparin. Chondroitin ABC lyase (chondroitinaseABC, EC 4.2.2.4 [EC] ) from Proteus vulgaris acted endolytically onchondroitin-6-sulphate (chondroitin sulphate C) and dermatansulphate at nearly identical initial rates, but acted on chondroitin-4-sulphate(chondroitin sulphate A) at a reduced rate, decreasing its molecularweight much more slowly. Two chondroitin AC lyases (chondroitinaseAC, both EC 4.2.2.5 [EC] ) were examined towards chondroitin-4- and-6-sulphates. The exolytic action of chondroitin AC lyase Afrom Arthrobacter aurescens on both chondroitin-4- and -6-sulphateswas demonstrated viscosimetrically and confirmed using bothgradient PAGE and gel permeation chromatography. ChondroitinAC lyase F from Flavobacterium heparinum (Cytophagia heparinia)acted endolytically on the same substrates. Chondroitin B lyase(chondroitinase B, no EC number) from F.heparinum acted endolyticallyon dermatan sulphate giving a nearly identical action patternas observed for chondroitin ABC lyase acting on dermatan sulphate. action pattern chondroitin lyase glycosaminoglycan heparin lyase.  相似文献   

12.
Ordered conformations from the sodium salts of chondroitin 4-sulphate, dermatan sulphate and heparan sulphate were observed by X-ray diffraction. Chondroitin 4-sulphate shows similar threefold helical character to that previously reported for chondroitin 6-sulphate and hyaluronates. Dermatan sulphate forms an eightfold helix with an axial rise per disaccharide of 0.93nm, which favours the l-iduronic acid moiety in the normal C1 chair form. The layer-line spacing and axial projection in heparan sulphate of 1.86nm favours a tetrasaccharide repeat with glycosidic linkages alternating beta-d-(1-->4) and alpha-d-(1-->4).  相似文献   

13.
An endothelial cell (EC) growth factor isolated from bovine brain stimulates in vitro growth of human umbilical vein endothelial cells, and permits long term serial propagation. In the presence of increasing concentrations of EC growth factor, confluent cultures of early (CPDL less than or equal to 20) and late (CPDL greater than 20) passage human endothelial cells exhibit an increased incorporation of 3H-glucosamine and Na235SO4 into the glycosaminoglycans (GAG), hyaluronic acid, chondroitin, chondroitin-4-sulfate, dermatan-4-sulfate, and chondroitin-6-sulfate. An increase in both labelled sulfated and nonsulfated GAG was observed in the cytosol, membrane, secreted and extracellular matrix fractions. In contrast, endothelial cells grown in the presence of EC growth factor contained decreased amounts of labelled heparan sulfate than cells grown without EC growth factor. Confluent cultures of early passage cells had significantly more labelled GAG but significantly less heparan sulfate than cultures of late passage cells on a per cell basis. Extracellular matrix from early passage cells contained about two- to seven-fold more labelled GAG than extracellular matrix from late passage cells, but only about half as much labelled heparan sulfate. Cell adhesion was enhanced when cells were grown in the presence of EC growth factor as compared to adhesion of cells grown without EC growth factor. Conversely, trypsin-mediated detachment of cells grown in the presence of growth factor was inhibited as compared to detachment of cells grown in medium without EC growth factor. The composition of the extracellular matrix influenced incorporation of labelled GAG into extracellular matrix. Early passage cells grown to confluence on a matrix from late passage cells incorporated significantly less labelled GAG into extracellular matrix than when grown to confluence on matrix from early passage cells. Incorporation of labelled GAG into extracellular matrix was significantly higher when late passage cells were grown on a matrix from early passage endothelial cells than when grown on matrix from late passage cells. We conclude that EC growth factor selectively stimulates incorporation of isotopic precursors into GAG in cultures of early and late passage endothelial cells but inhibits incorporation of radiolabel into heparan sulfate; early passage cells contain more GAG but less heparan sulfate than late passage cells, extracellular matrix controls the amount of GAG and heparan sulfate incorporated into matrix.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The ability of several animal, plant, and bacterial derived polyanions (PAs) as well as synthetic PAs to compete with heparin for the binding of acidic fibroblast growth factor (aFGF) was correlated with their ability to potentiate the mitogenic and neurotrophic actions of this factor. Dextran sulphate, K-carrageenan, pentosan sulphate, polyanethole sulfonate, heparin, and fucoidin competed for the heparin binding site on aFGF at relatively low concentrations (≤50 μg/ml). λ-carrageenan, ι-carrageenan, and polyvinyl sulphate exhibited lower affinity for aFGF, whereas hyaluronic acid, dermatan sulphate, chondroitin-6-sulphate, chondroitin-4-sulphate, and uncharged dextran displayed very low or no demonstrable affinity. Potentiation of the mitogenic action of aFGF for Balb/c 3T3 fibroblasts tended to be in general agreement with the aFGF binding affinity of the PAs. However, polyanethole sulfonate, the carrageenans, polyvinyl sulphate, fucoidin, and pentosan sulphate exerted a mitogenic action on the 3T3 cells that was independent of, and in addition to, the ability of these GAGs to potentiate the action of aFGF. The ability to potentiate the neurotrophic action of aFGF for E8 chick ciliary neurons was a general property of those PA with low or no activity in the mitogen assay. Thus hyaluronic acid, dermatan sulphate, chondroitin-4-sulphate, chondroitin-6-sulphate, and even uncharged dextran all potentiated aFGF induced neuronal survival. The differential effects of these PA in potentiating the biological activities of aFGF are discussed in relation to their ability to compete for the heparin-binding site of aFGF. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Glycosaminoglycans (GAGs) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study of GAGs from the porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord were isolated and purified by defatting, proteolysis, anion-exchange chromatography, and methanol precipitation. The isolated GAG content in brain was 5 times higher than in spinal cord (0.35 mg/g of dry sample, compared to 0.07 mg/g of dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG, respectively. The average molecular masses of CS from brain and spinal cord were 35.5 and 47.1 kDa, respectively, and those for HS from brain and spinal cord were 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the compositions of CS from brain and spinal cords are similar, with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine, but their composition of minor disaccharides differed. Analysis by (1)H and two-dimensional NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance.  相似文献   

16.
Glycosaminoglycans synthesized in polymorphonuclear (PMN) leucocytes isolated from blood (peripheral PMN leucocytes) and in those induced intraperitoneally by the injection of caseinate (peritoneal PMN leucocytes) were compared. Both peripheral and peritoneal PMN leucocytes were incubated in medium containing [35S]sulphate and [3H]glucosamine. Each sample obtained after incubation was separated into cell, cell-surface and medium fractions by trypsin digestion and centrifugation. The glycosaminoglycans secreted from peripheral and peritoneal PMN leucocytes were decreased in size by alkali treatment, indicating that they existed in the form of proteoglycans. Descending paper chromatography of the unsaturated disaccharides obtained by the digestion of glycosaminoglycans with chondroitinase AC and chondroitinase ABC identified the labelled glycosaminoglycans of both the cell and the medium fractions in peripheral PMN leucocytes as 55-58% chondroitin 4-sulphate, 16-19% chondroitin 6-sulphate, 16-19% dermatan sulphate and 6-8% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found only in the medium fraction. In peritoneal PMN leucocytes there is a difference in the composition of glycosaminoglycans between the cell and the medium fractions; the cell fraction was composed of 60% chondroitin 4-sulphate, 5.5% chondroitin 6-sulphate, 16.8% dermatan sulphate and 13.9% heparan sulphate, whereas the medium fraction consisted of 24.5% chondroitin 4-sulphate, 28.2% chondroitin 6-sulphate, 33.7% dermatan sulphate and 10% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found in the cell, cell-surface and medium fractions. On the basis of enzymic assays with chondro-4-sulphatase and chondro-6-sulphatase, the positions of sulphation in the disulphated disaccharides were identified as 4- and 6-positions of N-acetylgalactosamine. Most of the 35S-labelled glycosaminoglycans synthesized in peripheral PMN leucocytes were retained within cells, whereas those in peritoneal PMN leucocytes were secreted into the culture medium. Moreover, the amount of glycosaminoglycans in peritoneal PMN leucocytes was significantly less than that in peripheral PMN leucocytes. Assay of lysosomal enzymes showed that these activities in peritoneal PMN leucocytes were 2-fold higher than those in peripheral PMN leucocytes.  相似文献   

17.
Abstract— The non-metabolizable amino acid, 1-aminocyclopentane-l-carboxylic acid (ACPC), when administered to mice, induces primary degeneration of axons in the cerebellum, rostral spinal cord and peripheral nerves. One to 4 weeks after a single intraperitoneal injection of ACPC (0.5–2 mg/g body wt) in adult mice, the fresh and dry weights of brain, cerebellum and spinal cord were reduced compared with those of normal and pair-fed controls. The protein content of all CNS regions, but particularly that of the cerebellum and cervical spinal cord, was lowered in ACPC-treated mice relative to that of normal controls. Sciatic nerve protein was also decreased in mice following 2 mg/g of ACPC. Pair-fed controls exhibited protein deficits in the cerebellum and cervical spinal cord but to a significantly smaller degree. In ACPC-treated mice, the sulfatide content of spinal cord and peripheral nerve was reduced but that of brain was normal. Sphingomyelin levels in these three regions increased except in the brains of mice given 0.5 mg/g of ACPC where the levels fell.
The protein and sulfatide deficits were greatest in the regions which are known to exhibit the highest proportion of degenerating nerve fibers. The correlation of ACPC treatment with protein and sulfatide loss is consistent with the reported disruptive effects of ACPC on protein metabolism and with the involvement of proteins in sulfatide. metabolism. The protein deficits in pair-fed mice are considered in relation to the exacerbating effect of reduced dietary protein intake on ACPC neurotoxicity.  相似文献   

18.
Abstract— (1) Two myelin fractions of bovine peripheral nerve and spinal cord have been studied comparatively. Cholesterol as well as cerebroside content per mg of protein in the peripheral nerve myelin was less than that in the spinal cord myelin, while no significant difference in the total phospholipid content was noted.
(2) The basic proteins in myelin fractions were quantitatively estimated by disc gel electrophoresis. Around one-fourth of the total myelin protein in the bovine peripheral nerve was a basic protein with a mobility of 1.07 relative to lysozyme by Reisfeld's disc gel electrophoresis.
(3) The myelin proteins in the peripheral nerve were less completely solubilized than those of the spinal cord by treatment with deoxycholate as well as by Triton-salt solution. The protein fractions obtained from the peripheral nerve myelin by techniques similar to that for obtaining the proteolipids from the spinal cord myelin, contained different types of protein.
(4) 2',3'-Cyclic nucleotide 3'-phosphohydrolase activity in the peripheral nerve myelin was only one tenth of that in the spinal cord myelin. The Triton-salt insoluble fraction showed remarkable high activity among subfractions of the spinal cord myelin.
(5) By immunological studies, it may be concluded that an antigenic substance for experimental allergic neuritis was localized in the peripheral nerve myelin, but not in its basic protein.  相似文献   

19.
Ordered conformations from the sodium salts of chondroitin 4-sulphate, dermatan sulphate and heparan sulphate were observed by X-ray diffraction. Chondroitin 4-sulphate shows similar threefold helical character to that previously reported for chondroitin 6-sulphate and hyaluronates. Dermatan sulphate forms an eightfold helix with an axial rise per disaccharide of 0.93nm, which favours the l-iduronic acid moiety in the normal C1 chair form. The layer-line spacing and axial projection in heparan sulphate of 1.86nm favours a tetrasaccharide repeat with glycosidic linkages alternating β-d-(1→4) and α-d-(1→4).  相似文献   

20.
REGIONAL AND SUBCELLULAR DISTRIBUTION OF AMINOTRANSFERASES IN RAT BRAIN   总被引:6,自引:6,他引:0  
Abstract— Aminotransferase activity was measured in various areas of the nervous system of the rat (cortical grey matter, midbrain, corpus callosum, spinal cord and sciatic nerve) and in subcellular fractions of rat brain (nuclei, mitochondria and cytosol). Activity was low or absent in the sciatic nerve relative to that in the other areas, with the exception of incubation of glutamate with oxaloacetate (25 per cent of the activity found in brain) and of asparagine with 2-oxoglutarate (65 per cent of the activity found in brain). The distribution of enzymic activity was not homogeneous; alanine-2-oxoglutarate aminotransferase was highest in cortical grey matter; leucine- and GABA-2-oxoglutarate aminotransferases were highest in midbrain. Incubation of phenylalanine or tyrosine with 2-oxoglutarate gave similar activities in grey matter and midbrain. Activity generally was higher in the grey matter than in corpus callosum or spinal cord. However, incubations of methionine with 2-oxoglutarate, or glutamine with glyoxylate, gave similar activities in the three areas studied from the brain, whereas incubations of glutamate with glyoxylate gave highest activity in the corpus callosum. Only incubations of asparagine with 2-oxoglutarate, and glutamate with glyoxylate, gave significant activity in the nuclear subcellular fraction. Aminotransferase activity of phenylalanine, tyrosine or GABA with 2-oxoglutarate, or ornithine or glutamine with glyoxylate, was localized to mitochondria. The remaining reactions studied (glutamate with oxaloacetate; leucine, alanine, methionine or asparagine with 2-oxoglutarate and glutamate with glyoxylate) demonstrated activity in both the mitochondrial fraction and the soluble supernatant fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号