首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The antigen Ki-67 Ag, regarded as a marker for proliferating cells, was identified as a protein(s) (pKi-67) which can exist free or associated with DNA as evidenced by DNA digestion of cells before or after immunolabeling with Ki-67. The dual nature of this antigen was also supported by reconstitution of Ki-67 Ag from purified DNA and nuclear proteins extracted from the K562 cell line. The immunoreactivity of the resulting complexes was examined in solution using Ki-67 and MIB-1 antibodies. The interaction between Ki-67 or MIB-1 antibodies and pKi-67 was enhanced in the presence of undegraded ds DNA, indicating that ds DNA modulates the conformation of pKi-67 and that the altered conformation of pKi-67 is more reactive than the pure protein to both Ki-67 and MIB-1 antibodies.  相似文献   

3.
A cell proliferation marker protein, pKi-67, distributes to the chromosome periphery during mitosis and nucleolar heterochromatin in the interphase. We report here on the structural domains of pKi-67 that are required for its correct distribution. While both the LR domain and the conserved domain were involved in localization to the nucleolar heterochromatin, both the LR domain and the Ki-67 repeat domain were required for its distribution to the mitotic chromosome periphery. Using in vivo time-lapse microscopy, GFP-pKi-67 was dynamically tracked from the mitotic chromosome periphery to reforming nucleoli via prenucleolar bodies (PNBs). The signals in PNBs then moved towards and fused into the reforming nucleoli with a thin string-like fluorescence during early G1 phase. An analysis of the in vivo kinetics of pKi-67 using photobleaching indicated that the association of pKi-67 with chromatin was progressively altered from "loose" to "tight" after the onset of anaphase. These findings indicate that pKi-67 dynamically alters the nature of the interaction with chromatin structure during the cell cycle, which is closely related to the reformation process of the interphase nucleolar chromatin.  相似文献   

4.
We investigated the chromatin organization of living cells with a combination of recently developed approaches for histone and DNA labeling. Nucleosomal DNA was labeled with a histone H2B-GFP (green fluorescent protein) fusion protein and the chromatin organization of living HeLa cells was analyzed by high resolution confocal microscopy. Within the perinuclear and perinucleolar regions chromatin was organized into large-scale fibers of 2 to 8 microm in length and 300 to 500 nm in diameter. Within the nuclear interior we observed similar large-scale fibers, but in addition focal as well as diffuse forms of organization. Comparison with standard labeling and detection procedures revealed major differences in the chromatin organization observed. Chromatin organization revealed by the distribution of histone H2B-GFP was directly compared with the functional organization of chromatin by Cy3-dUTP labeling of DNA replicating at a specific time. DNA regions replicating at a specific time display characteristic physical and functional properties. Analysis of Cy3-labeled foci revealed that they are associated with all three forms of chromatin organization (fibrillar, focal and diffuse). In particular, Cy3-labeled foci appeared as discontinuous regions of large-scale fibers. These results demonstrate that large-scale chromatin fibers have discontinuous functional characteristics.  相似文献   

5.
It has been shown that a repetitive motif with the sequence FKEL(F) within the Ki-67 antigen (pKi-67) serves as an epitope for the Ki-67 antibody and equivalent clones. However, no direct correlation between reactivity towards Ki-67 epitopes and reactivity in formalin-fixed paraffin-embedded (FFPE) tissue could be found. In this study our aim was the isolation and characterization of new monoclonal Ki-67 equivalent antibodies in an in vitro approach. To select pKi-67 reactive phage antibodies, we used a large naive Fab-phage library (Human Combinatorial Antibody Library; HuCAL). We implemented a panning strategy against two different overlapping peptides, both containing the 'FKELF' epitope. ELISA screening of randomly picked phage antibody clones after the third selection round yielded six highly reactive clones against the 'FKELF' epitope, of which five were found to be reactive in FFPE tissue, showing a Ki-67 equivalent staining pattern. Substitutional epitope analysis on peptide arrays of the new recombinant pKi-67 binders and of the established murine clones Ki-67, Mib-1 and Mib-5 were carried out to compare their fine specificities. The results suggest that the lysine residue in the epitope is critical for recognition of Ki-67 antigen in FFPE tissue.  相似文献   

6.
7.
The distribution of the anti-cancer drug doxorubicin (DOX) in human breast cancer MCF-7 cells was imaged directly by low-energy-loss electron microscopy (EM) without specific antibodies or heavy metal stains, using only the electron-induced molecular orbital excitation of the drug. Cells treated with DOX were examined live by confocal fluorescence microscopy and as very thin sections in an electron microscope equipped with an electron energy filter having an energy resolution of 1 eV. The distribution of DOX obtained by EM from pairs of images at energy losses of 3+/-1 eV and 10+/-1 eV agreed with fluorescence microscope observations, but provided much more detail, easily distinguishing localization between nuclear membrane and perimembrane compartments and between vacuolated nucleoli and perinucleolar chromatin. Treatment times up to 1h and DOX concentrations up to 30 microM indicated a progression of DOX ingress from higher concentrations in the nuclear membrane to labeling of the nucleolus. Subsequently DOX moved into perinucleolar chromatin and concentrated in perimembrane chromatin aggregations. Quantification of the DOX signal indicated a decay half-life of 320 e/A2 under electron irradiation, whereas each image at 3000 x required 10 e/A2. The results point to a new field of high resolution microanalysis: color electron microscopy.  相似文献   

8.
9.
In somatic tissues, the mouse Ki-67 protein (pKi-67) is expressed in proliferating cells only. Depending on the stage of the cell cycle, pKi-67 is associated with different nuclear domains: with euchromatin as part of the perichromosomal layer, with centromeric heterochromatin, and with the nucleolus. In gametes, sex-specific expression is evident. Mature MII oocytes contain pKi-67, whereas pKi-67 is not detectable in mature sperm. We investigated the re-establishment of the cell cycle-dependent distribution of pKi-67 during early mouse development. After fertilization, male and female pronuclei exhibited very little or no pKi-67, while polar bodies were pKi-67 positive. Towards the end of the first cell cycle, prophase chromosomes of male and female pronuclei simultaneously got decorated with pKi-67. In 2-cell embryos, the distribution pattern changed, presumably depending on the progress of development of the embryo, from a distribution all over the nucleus to a preferential location in the nucleolus precursor bodies (NPBs). From the 4-cell stage onwards, pKi-67 showed the regular nuclear relocations known from somatic tissues: during mitosis the protein was found covering the chromosome arms as a constituent of the perichromosomal layer, in early G1 it was distributed in the whole nucleus, and for the rest of the cell cycle it was associated with NPBs or with the nucleolus.  相似文献   

10.
The cell cycle-dependent distribution of the proliferation-associated Ki-67 antigen has been evaluated immunocytochemically in L-132 human fetal lung cells. The cells were synchronized and cell cycle phases were determined: G1 = 6.7 h, S = 5.4 h, G2 = 8.5 h and mitosis = 1.3 h. The Ki-67 patterns were strictly correlated with the cell cycle phases. In late G1-phase, Ki-67 antigen was present only in the perinucleolar region. In the S-phase, Ki-67 staining was found homogeneously in the karyoplasm and in the perinucleolar region. G2-phase cells contained a finely granular Ki-67 staining in the karyoplasm with Ki-67-positive specks and perinucleolar staining. In early mitotic cells (pro- and metaphase) an intense perichromosomal Ki-67 staining was observed in addition to a homogeneously stained karyoplasm in prophase, and cytoplasm in metaphase. During ana- and telophase the Ki-67 antigen disappeared rapidly. In resting cells there was no Ki-67 staining.  相似文献   

11.
The Ki-67 antigen (pKi-67) is widely used as a cell proliferation marker protein. Its actual role in the cell cycle progression, however, is presently unclear. Using a two-hybrid screening in yeast, a novel protein, termed Hklp2 (human kinesin-like protein 2), was identified and shown to interact with the forkhead-associated (FHA) domain of pKi-67. Hklp2 has 1388 amino acids and shows a striking similarity (a 53% identity in amino acids) to Xklp2, a plus-end directed kinesin-like motor found in Xenopus. The interaction domain of Hklp2 was mapped to the portion that comprised residues 1017-1237 and that was phosphorylated in vitro by incubating with mitotic but not interphasic HeLa cell extracts. That the interaction was striking in the mitotic extract was also verified. In addition, immunofluorescence using specific antibodies revealed an association between pKi-67 and Hklp2 at the periphery of mitotic chromosomes, largely in close proximity to the centromeres. These findings suggest that pKi-67 is involved in the progression of mitosis via its interaction with Hklp2.  相似文献   

12.
The human proliferation-associated epitope recognized by the Ki-67 monoclonal antibody (MAb) was detected in proliferating normal and neoplastic cells of many mammalian species (lamb, calf, dog, rabbit, rat) besides human. In contrast, Ki-67 stained proliferating cells from other species weakly (mouse) or not at all (swine, cat, chicken, pigeon). The immunostaining pattern of Ki-67 in animal tissues was identical to that previously described in human: Ki-67 reacted only with cells known to proliferate (e.g., germinal center cells, cortical thymocytes) but not with resting cells (e.g., hepatocytes, brain cells, renal cells); this MAb produced a characteristic nuclear staining pattern (e.g., stronger labeling of nucleoli than of the rest of the nuclei and staining of chromosomes in mitotic figures); and Ki-67 crossreacted with the squamous epithelium in both animal and human tissues. In vitro studies showed that when quiescent (Ki-67-negative) NIH 3T3 fibroblasts or bovine peripheral blood lymphocytes were induced to proliferate, the appearance of Ki-67-positive cells paralleled the induction of cell proliferation caused by addition of fetal calf serum or PHA, respectively, to the cultures, and in both human and rat proliferating cells the Ki-67 expression closely paralleled the incorporation of [3H]-thymidine. These findings indicate that the epitope recognized by the Ki-67 MAb in human and animal species is the same. The widespread evolutionary conservation of the human proliferation-associated epitope recognized by the Ki-67 MAb suggests that it and/or its carrier molecule may play an important role in regulation of cell proliferation.  相似文献   

13.
14.
Summary Immunocytochemistry using the monoclonal antibody Ki-67 is a commonly used method to assess proliferative activity of malignant tumours. Ki-67 reacts with proliferating cells with an antigen, whose structure, function and exact locations are unknown. We studed the subcellular location of Ki-67 in MCF-7 cells using immunoelectron microscopy. In the interphase cells, Ki-67 immunoreactivity was localized in the nucleolus, mainly in the nucleolar cortex. In particular areas of the granular component of the nucleolus were strongly stained. Weak spot-like nucleoplasmic immunostaining was also seen outside the nucleolus. During prophase Ki-67 antigen was localized on the surfaces of the condensed chromatin and during metaphase on the surface of the chromosomes. After cell division and prior to formation of new nucleoli, Ki-67 immunoreactivity was located in the nucleoplasm. Quantification of Ki-67 immunofluorescence signal by flow cytometry revealed highest Ki-67 levels in mitotic cells. The localtion of Ki-67 is very similar to certain recently described proteins of nucleolar preribosomes suggesting that Ki-67 may also be a component of the preribosomes.  相似文献   

15.
Metaphase nucleolar organizer regions (NORs), one of four types of chromosome bands, are located on human acrocentric chromosomes. They contain r-chromatin, i.e., ribosomal genes complexed with proteins such as upstream binding factor and RNA polymerase I, which are argyrophilic NOR proteins. Immunocytochemical and cytochemical labelings of these proteins were used to reveal r-chromatin in situ and to investigate its spatial organization within NORs by confocal microscopy and by electron tomography. For each labeling, confocal microscopy revealed small and large double-spotted NORs and crescent-shaped NORs. Their internal three-dimensional (3D) organization was studied by using electron tomography on specifically silver-stained NORs. The 3D reconstructions allow us to conclude that the argyrophilic NOR proteins are grouped as a fiber of 60–80 nm in diameter that constitutes either one part of a turn or two or three turns of a helix within small and large double-spotted NORs, respectively. Within crescent-shaped NORs, virtual slices reveal that the fiber constitutes several longitudinally twisted loops, grouped as two helical 250- to 300-nm coils, each centered on a nonargyrophilic axis of condensed chromatin. We propose a model of the 3D organization of r-chromatin within elongated NORs, in which loops are twisted and bent to constitute one basic chromatid coil.  相似文献   

16.
Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy.  相似文献   

17.
18.
Traut W  Endl E  Scholzen T  Gerdes J  Winking H 《Chromosoma》2002,111(3):156-164
We used immunolocalization in tissue sections and cytogenetic preparations of female and male gonads to study the distribution of the proliferation marker pKi-67 during meiotic cell cycles of the house mouse, Mus musculus. During male meiosis, pKi-67 was continuously present in nuclei of all stages from the spermatogonium through spermatocytes I and II up to the earliest spermatid stage (early round spermatids) when it appeared to fade out. It was not detected in later spermatid stages or sperm. During female meiosis, pKi-67 was present in prophase I oocytes of fetal ovaries. It was absent in oocytes from newborn mice and most oocytes of primordial follicles from adults. The Ki-67 protein reappeared in oocytes of growing follicles and was continuously present up to metaphase II. Thus, pKi-67 was present in all stages of cell growth and cell division while it was absent from resting oocytes and during the main stages of spermiocytogenesis. Progression through the meiotic cell cycle was associated with extensive intranuclear relocation of pKi-67. In the zygotene and pachytene stages, most of the pKi-67 colocalized with centromeric (centric and pericentric) heterochromatin and adjacent nucleoli; the heterochromatic XY body in male pachytene, however, was free of pKi-67. At early diplotene, pKi-67 was mainly associated with nucleoli. At late diplotene, diakinesis, metaphase I and metaphase II of meiosis, pKi-67 preferentially bound to the perichromosomal layer and was almost absent from the heterochromatic centromeric regions of the chromosomes. After the second division of male meiosis, the protein reappeared at the centromeric heterochromatin and an adjacent region in the earliest spermatid stage and then faded out. The general patterns of pKi-67 distribution were comparable to those in mitotic cell cycles. With respect to the timing, it is interesting to note that relocation from the nucleolus to the perichromosomal layer takes place at the G2/M-phase transition in the mitotic cell cycle but at late diplotene of prophase I in meiosis, suggesting physiological similarity of these stages.  相似文献   

19.
We previously demonstrated that phospho-Thr56 Bcl-2 colocalizes with Ki-67 and nucleolin in nuclear structures in prophase cells and is detected on mitotic chromosomes in later mitotic phases. To gain insight into the fine localization of Bcl-2 on mitotic chromosomes, we further investigated Bcl-2 localization by immunostaining of Bcl-2 with known components of metaphase chromosomes and electron microscopic immunocytochemistry. Immunofluorescence analysis on HeLa mitotic cells together with chromatin immunoprecipitation assays showed that Bcl-2 is associated with the condensed chromatin. Co-immunostaining experiments performed on mitotic chromosome spreads demonstrated that Bcl-2 is not localized on the longitudinal axis of chromatids with the condensin complex, but partially colocalizes with histone H3 on some regions of the mitotic chromosome. Finally, most of the Bcl-2 staining overlaps with Ki-67 staining at the chromosome periphery. Bcl-2 localization at the periphery and over the mitotic chromosome was confirmed by immunoelectron microscopy on mitotic cells.Our results indicate that Bcl-2 is an integral component of the mitotic chromosome.  相似文献   

20.
The three-dimensional (3D) organization of rDNA-containing chromatin was studied in structurally well preserved, interphase nuclei ofPisum sativum root tips by in situ hybridization using a biotinylated cDNA probe to the 18, 5.8 and 25 S rDNA sequences. The probe was detected by immunofluorescence and optical section images recorded either by video imaging or by using a confocal laser scanning microscope. Detailed 3D reconstructions were made of 12 nucleoli by projection of confocal optical sections. The probe labelled four perinucleolar heterochromatin sites, one pair 1.0–2.1 µm in diameter and the other 0.5–1.0 µm diameter. It also labelled intranucleolar structures including 300–500 nm spots emanating from the perinucleolar sites into the body of the nucleolus. The intranucleolar labelled structures emanating from the perinucleolar sites lay in discrete domains. Medium power observations of 22 fields of cells (6–30 cells per field) were made by optical sectioning using a video camera and computer deblurring. The arrangement of the perinucleolar sites was modelled in each cell and the arrangements examined for nonrandomness. The sites tended to be spaced out around the nucleolar periphery approximating a regular tetrahedral arrangement as if to minimize clustering and the large sites appeared to lie in a plane perpendicular to the root axis. Cells with multiple nucleoli did not have any preferred distribution of sites between nucleoli. These observations are discussed in terms of current models of rDNA organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号