首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chloroplast photorelocation movement is important for plants to perform efficient photosynthesis. Phototropins were identified as blue-light receptors for chloroplast movement in Arabidopsis thaliana and in the fern Adiantum capillus-veneris, whereas neochrome functions as a dual red/blue light receptor in the latter. However, the signal transduction pathways involved in chloroplast movement remain to be clarified. To investigate the kinetic properties of signalling from these photoreceptors to the chloroplasts, we deduced the speed of signal transfer using Adiantum capillus-veneris gametophytes. When a region of dark-adapted gametophyte cells was subjected to microbeam irradiation, chloroplasts moved towards the irradiated area even in subsequent darkness. We therefore recorded the movement and calculated the speeds of signal transfer by time-lapse imaging. Movement speeds under red or blue light were similar, e.g., about 1.0 μm min−1 in prothallial cells. However, speeds varied according to cell polarity in protonemal cells. The speed of signal transfer from the protonemal apex to the base was approximately 0.7 μm min−1, but roughly 2.3 μm min−1 in the opposite direction. The speed of signal transfer in Arabidopsis thaliana mesophyll cells was approximately 0.8 μm min−1 by comparison. Surprisingly, chloroplasts located farthest away from the microbeam were found to move faster than those in close proximity to the site of irradiation both in Adiantum capillus-veneris and A. thaliana.  相似文献   

2.
Two nuclear-coded heat-shock proteins (HSP) of pea (Pisum sativum) are synthesized as larger precursors of 26 kDa and 30 kDa in vitro. They are transported post-translationally into isolated, homologous chloroplasts where they are processed to mature proteins of 22 kDa and 25 kDa, respectively. When the chloroplasts used for the transport are isolated from control plants grown at 25 degrees C the 22-kDa and 25-kDa HSPs are located in the stroma of the chloroplasts. However, when chloroplasts are prepared from heat-shocked plants both proteins are found bound to the thylakoid membranes. The transition of the non-binding to the binding status is comparatively sharp and occurs between 36 degrees C and 40 degrees C in the variety 'Rosa Krone'. The transition temperature has been determined at 38 degrees C for 'Rosa Krone' and at 40 degrees C for the variety 'Golf'. At 42 degrees C, 15-min treatment of the plants is sufficient to induce membrane binding, which persists for at least 4-6 h (but not for 24 h) after return to the ambient temperature. Once lost, membrane binding can be reinduced by a second heat-shock treatment in vivo. High light intensities during the heat shock interfere with the binding capacity for heat-shock proteins.  相似文献   

3.
《FEBS letters》1986,196(1):171-174
Pea seedlings grown for 5 days in the dark were treated with red light for 5 min and grown for 2 more days in the dark. Effects of the red light on chloroplast DNA levels in the pea leaves were examined using probe DNA of the chloroplast-coded large subunit and nuclear-coded small subunit of ribulosebisphosphate carboxylase/oxygenase. The gene dosage of the large subunit, but not of the small subunit, was increased by red light. The increase was inhibited by subsequent far-red light treatment. These results indicate that accumulation of chloroplast DNA in the cell is mediated by phytochrome. Probably the replication of chloroplast DNA is mediated by phytochrome.  相似文献   

4.
Cadmium accumulation in the chloroplast of Euglena gracilis   总被引:5,自引:0,他引:5  
Intracellular distribution of Cd, cysteine, glutathione, and Cd-induced thiol peptides in Euglena gracilis cultured under photoheterotrophic conditions was studied. After 3 days of culture with 0.2 m M CdCl2, 62% of the Cd accumulated by cells was equally distributed between the cytosolic and chloroplastic fractions. However, after 8 days, metal content increased in the crude chloroplastic fraction to 40% of total and decreased to 19% in the cytosol; in Percoll-purified chloroplasts the estimated content of Cd raised to 62%. Accumulation of Cd in chloroplasts could be mediated by a transporter of free Cd2+, since uptake of added CdCl2 in isolated chloroplasts exhibited a hyperbolic type of kinetics with a Km of 57 µ M and Vmax of 3.7 nmol (mg protein)−1 min−1. The contents of cysteine and glutathione markedly increased in both chloroplasts (7–19 times) and cytosol (4–9 times) by exposure to Cd2+, although they were always higher in the cytosol. Thiol-containing peptides induced by Cd were mainly located in the cytosol after 3 days, and in the chloroplasts after 8 days of culture. The data suggested that Cd was compartmentalized into chloroplasts in a process that may involve the transport of free Cd and the participation of thiol-peptides.  相似文献   

5.
Journal of Plant Research - In plants, F1 hybrids showing hybrid weakness exhibit weaker growth than their parents. The phenotypes of hybrid weakness are often suppressed at certain temperatures....  相似文献   

6.
Michael Boska  Kenneth Sauer 《BBA》1984,765(1):84-87
The risetime of EPR signal IIvf (S IIvf) has been measured in oxygen-evolving Photosystem II particles from spinach chloroplasts at pH 6.0. The EPR signal shows an instrument-limited rise upon induction (t12 ? 3 μs). These data are consistent with a model where the species Z responsible for S IIvf is the immediate electron donor to P-680+ in spinach chloroplasts. A new, faster decay component of S IIvf has also been detected in these experiments.  相似文献   

7.
The signal recognition particle (SRP) is a ubiquitous system for the targeting of membrane and secreted proteins. The chloroplast SRP (cpSRP) is unique among SRPs in that it possesses no RNA and is functional in post-translational as well as co-translational targeting. We have expressed and purified the two components of the Arabidopsis thaliana chloroplast signal recognition particle (cpSRP) involved in post-translational transport: cpSRP54 and the chloroplast-specific protein, cpSRP43. Recombinant cpSRP supports the efficient in vitro insertion of pea preLhcb1 into isolated thylakoid membranes. Recombinant cpSRP is a stable heterodimer with a molecular mass of approximately 100 kDa as determined by analytical ultracentrifugation, gel filtration analysis, and dynamic light scattering. The interactions of the components of the recombinant heterodimer and pea preLhcb1 were probed using an immobilized peptide library (pepscan) approach. These data confirm two previously reported interactions with the L18 region and the third transmembrane helix of Lhcb1 and suggest that the interface of the cpSRP43 and cpSRP54 proteins is involved in substrate binding. Additionally, cpSRP components are shown to recognize peptides from the cleavable, N-terminal chloroplast transit peptide of preLhcb1. The interaction of cpSRP43 with cpSRP54 was probed in a similar experiment with a peptide library representing cpSPR54. The C terminus of cpSRP54 is essential for the formation of the stable cpSRP complex and cpSPR43 interacts with distinct regions of the M domain of cpSRP54.  相似文献   

8.
The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the ER membrane in eukaryotes, the plasma membrane in bacteria and the thylakoid membrane in chloroplasts. In higher plants two different SRP-dependent mechanisms have been identified: one post-translational for proteins imported to the chloroplast and one co-translational for proteins encoded by the plastid genome. The post-translational chloroplast SRP (cpSRP) consists of the protein subunits cpSRP54 and cpSRP43. An RNA component has not been identified and does not seem to be required for the post-translational cpSRP. The co-translational mechanism is known to involve cpSRP54, but an RNA component has not yet been identified. Several chloroplast genomes have been sequenced recently, making a phylogenetically broad computational search for cpSRP RNA possible. We have analysed chloroplast genomes from 27 organisms. In higher plant chloroplasts, no SRP RNA genes were identified. However, eight plastids from red algae and Chlorophyta were found to contain an SRP RNA gene. These results suggest that SRP RNA forms a complex in these plastids with cpSRP54, reminiscent of the eubacterial SRP.  相似文献   

9.
The rise time of the photoinduced, reversible EPR Signal IIvf in spinach chloroplasts is found using flash excitation to be 20 ± 10 μs. The results are interpreted as evidence that the Signal IIvf radical is an electron carrier on the donor side of Photosystem II, but probably does not result from the first donor to P680+.  相似文献   

10.
11.
12.
Summary. We studied whether the monokaryotic chloroplast (moc) mutation affects the transmission of chloroplast and mitochondrial DNA in Chlamydomonas species. We used a previously isolated moc mutant from our cell line G33, which had only one large chloroplast nucleus. To obtain zygotes we crossed the mutant cells with wild-type cells, and mutant cells with receptive mates (females [mt+] with males [mt–]). In these zygotes, we recorded preferential dissolution of mt– parental chloroplast nuclei and fusion of the two cell nuclei. Antibiotic-resistance markers of chloroplast DNA were maternally transmitted in all crosses. PCR analysis of the cytochrome b (cob) gene sequence showed that the mitochondrial DNA was paternally transmitted to offspring. These results suggest that the moc mutation did not affect the organelle DNA transmission.Correspondence and reprints: Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.  相似文献   

13.
Summary Identified as a dry receptive unit by transitory impulse frequencies up to about 200 imp/sec during rapid drops in humidity (Fig. 3) and which no other modality elicited, the dry unit on the antenna ofPeriplaneta americana is characterized by a regular (Fig. 4) and relatively high stationary impulse frequency (10–65 imp/s). Without exception the stationary discharge rate (tonic frequency) rose with falling values of stationary absolute humidity at constant temperature, and with rising values of stationary temperature of ambient air at constant humidity. Enthalpy and evaporation cooling appear to be ruled out as exclusive adequate explanations for this double dependence. No matter whether tonic frequency is plotted against absolute humidity based on either volume of moist air or weight of dry air, or against partial pressure of water vapor in ambient air, or the difference between saturation and partial vapor pressure, or against relative humidity, the dependence on the temperature is not eliminated (Figs. 5–7). Because a temperature range of about 20 °C and all humidities between 0 and 100% occupy the same large segment of the unit's tonic frequency spectrum (Fig. 8), the unit is termed bimodal.The author wishes to express indebtedness and gratitude to Prof. Dr. Hansjochem Autrum for backing the early stages of this project with the assistance of the Deutsche Forschungsgemeinschaft, to Prof. Dr. Helmut Altner for his prolonged support, to Dr. Hans-Jürgen Hinz for his helpful discussion of questions involving thermodynamics, to Prof. Dr. Friedrich Earth for helpful criticism of the text, and to Miss Christel Praeg for tireless technical assistance.  相似文献   

14.
The photoreceptors for chloroplast photorelocation movement have been known, but the signal(s) raised by photoreceptors remains unknown. To know the properties of the signal(s) for chloroplast accumulation movement, we examined the speed of signal transferred from light-irradiated area to chloroplasts in gametophytes of Adiantum capillus-veneris. When dark-adapted gametophyte cells were irradiated with a microbeam of various light intensities of red or blue light for 1 min or continuously, the chloroplasts started to move towards the irradiated area. The speed of signal transfer was calculated from the relationship between the timing of start moving and the distance of chloroplasts from the microbeam and was found to be constant at any light conditions. In prothallial cells, the speed was about 1.0 µm min−1 and in protonemal cells about 0.7 µm min−1 towards base and about 2.3 µm min−1 towards the apex. We confirmed the speed of signal transfer in Arabidopsis thaliana mesophyll cells under continuous irradiation of blue light, as was about 0.8 µm min−1. Possible candidates of the signal are discussed depending on the speed of signal transfer.Key words: Adiantum capillus-veneris, Arabidopsis thaliana, blue light, chloroplast movement, microbeam, red light, signalOrganelle movement is essential for plant growth and development and tightly regulated by environmental conditions.1 It is well known that light regulates chloroplast movement in various plant species. Chloroplast movement can be separated into three categories, (1) photoperception by photoreceptors, (2) signal transduction from photoreceptor to chloroplasts and (3) movement of chloroplasts and has been analyzed from a physiological point of view.2 We recently identified the photoreceptors in Arabidopsis thaliana, fern Adiantum capillus-veneris, and moss Physcomitrella patens. In A. thaliana, phototropin 2 (phot2) mediates the avoidance movement,3,4 whereas both phototropin 1 (phot1) and phot2 mediate the accumulation response.5 A chimeric photoreceptor neochrome 1 (neo1)6 was identified as a red/far-red and blue light receptor that mediates red as well as blue light-induced chloroplast movement in A. capillusveneris.7 Interestingly, neo1 mediated red and blue light-induced nuclear movement and negative phototropic response of A. capillus-veneris rhizoid cells.8,9 On the mechanism of chloroplast movement, we also found a novel structure of actin filaments that appeared between chloroplast and the plasma membrane at the front side of moving chloroplast.10 Recent studies using the technique of microbeam irradiation have revealed that chloroplasts do not have a polarity for light-induced accumulation movement and can move freely in any direction both in A. capillus-veneris prothallial cells and in A. thaliana mesophyll cells.11 However, the signal that may be released from photoreceptors and transferred to chloroplasts remains unknown.To understand the properties of the signal for the chloroplast accumulation response, we examined the speed of signal transfer in dark-adapted A. capillus-veneris gametophyte cells and A. thaliana mesophyll cells by partial cell irradiation with a red and/or blue microbeam of various light intensities for 1 min and the following continuous irradiation, respectively.12As shown in Figure 1, the relation between the distance of chloroplasts from the microbeam and the timing when each chloroplast started moving toward the microbeam irradiated area (shown as black dots in Fig. 1) was obtained and plotted. The lag time between the onset of microbeam irradiation and the timing of start moving of chloroplasts is the time period needed for a signal to reach each chloroplast. To obtain more accurate data many chloroplasts at various positions were used. The slope of the approximate line indicates the average speed of the signal transfer. Shown with a protonemal cell at the left side of this figure is an instance where the speed of signal transfer from basal-to-apical (acropetal) direction is obtained.Open in a separate windowFigure 1How to calculate the speed of signal transfer in the basal cell of two-celled protonema of Adiantum capillus-veneris. The relationship between the distance of chloroplast position from the edge of the microbeam to the center of each chloroplast as shown in left side of figure and the timing of chloroplast movement initiated shown as the black dots was obtained. Inclination of the approximate lines connecting dots indicates the speeds of the signal transfer.In protonemal cells, which are tip-growing linear cells, the average speed of signal transfer was about 2.3 µm min−1 from basal-to-apical (acropetal) and about 0.7 µm min−1 from apical-to-basal (basipetal) directions. These values were almost constant irrespective of light intensity, wavelength, irradiation period, and the region of the cell irradiated.12 The difference of speed between basipetal and acropetal directions may be depending on cell polarity. The signal transfer in prothallial cells of A. capillus-veneris and mesophyll cells of A. thaliana was about 1.0 µm min−1 to any direction, probably because they may not have a polarity comparing to protonemal cells or have a weak polarity if any. Thus, the speed of signal transfer must be conserved in most land plants,12 if not influenced by strong polarity.
R1W m−2R1W m−2B1W m−2R0.1W m−2R10W m−2B10W m−2
1 mincountinuouscountinuouscountinuouscountinuouscountinuous
Protonemal cell (towards apical region)2.322.372.282.412.39
Protonemal cell (towards basal region)0.580.730.800.740.86
Prothallial cell1.130.921.101.080.95
Arabidopsis thaliana0.70
Open in a separate windowThe speeds of signal transfer under different light intensities and wave length in Adiantum capillus-veneris gametophyte cells and Arabidopsis thaliana mesophyll cells are summarized. When dark-adapted cells were irradiated with various light intensities (red light: 10, 1, 0.1 W m−2) of a microbeam of red or blue light for 1 min or continuously, the chloroplasts moved towards the irradiated area. The speed of signal transfer was measured from the relationship between the timing of onset of moving and the distance of chloroplalsts from the microbeam irradiated area.Calcium ions have been proposed as one of the candidates of the signal. Calcium is reported to be necessary for chloroplast movement in some plants.13,14 Chloroplast movement under polarized light could not be induced in the existence of EGTA in protonemal cells of A. capillus-veneris, although chloroplasts show slight movement in random direction.13 In Lemna trisulca, chloroplast movement correlates with an increase of cytoplasmic calcium levels and is inhibited by antagonists of calcium homeostasis.14 The speed of intracellular transfer of calcium ions in plant cells was measured only in moss Physcomitrella patens by microinjection of a calcium indicator into protonemal cells.15 The speed of calcium waves in the cytoplasm of protonemal cell was about 3.4 µm sec−1. The speed of substance transfer as signals is not known in plant cells except for the above instance, as far as we know, but in animal cells various experimental data has been accumulated.1621The transfer speed of calcium waves visualizing cytoplasmic free calcium by microinjection of aequorin was about 8 µm sec−1 in Xenopus eggs.16 Calcium ion expands as a spherical wave and the wave speed in plane is 50 µm sec−1 in rat cardiac myocytes when measured by loading a membrane-permeable indicator of calcium into the cell. The maximum velocity was 112 µm sec−1.17 Calcium waves could also be observed in the SR-free single isolated rabbit cardiac myofibrils with a propagation velocity of 15.5 µm sec−1.18 The propagation velocity of the calcium wave was about 65–100 µm sec−1 by calciuminduced calcium release (CICR) in pig heart muscle cells.1921 Comparing these values to our data in A. capillus-veneris, the speed of signal transfer in chloroplast movement in fern gametophytes was 100–200 times slower than those measured for calcium ion transfers in animal cells, suggesting that the calcium might not be the signal involved in chloroplast movement.Intracellular transport is depended on the cytoskeleton systems in many cases. So the speed of movement of the cytoskeleton itself has been examined. When motor-proteins (such as 22s dynein, 14s dynein, kinesin) were anchored on a slide glass microtubules overlaid moved with a speed of about 4.52, 4.29, 0.422 µm sec−1, respectively. In similar ways, actin filaments placed over myosin-coated glass moved at about 5.21 µm sec-1.22 On the other hand, the motor domain of the Centromere Binding Factor (CBF) protein complex moves at 4.04 µm min−1 on microtubules.23 In A. capillus-veneris protonemal cells, the speed of cytoplasmic streaming depending on the actomyosin system was calculated from the speed of oil drop movement.24 The speed was dependent upon the position of long protonemal cells and was about 2 µm min−1 in the apical region and gradually increased to 10 µm min−1 in the basal region. In comparison to the data cited here, the speed of signal transfer involved in chloroplast accumulation was 30–120 times slower than the speed of the actomyosin system or the microtubule-kinesin/dynein system, but it is similar to the moving speed of a protein complex on a microtubule23 and oil droplets in a protonemal cell.24Polymerization rates of cytoskeletal proteins have been measured using in vitro systems. For instance, the plus end of microtubules from bovine brains grew at 1.04–1.88 µm min−1.25,26 Polymerization rate of actin filaments from rabbit muscle was about 0.13–0.49 µm min−1 and depended on the G-actin concentration.27 Live BHK21 fibroblasts, mouse melanoma cells and Dictyostelium amoebae expressing GFP-actin fusion proteins move on glass by using three-dimensional F-actin bands. These structures propagate throughout the cytoplasm at rates ranging between 2–5 µm min−1 in each cell type and produce lamellipodia or pseudopodia at the cell boundary.28 The extending speed of these cytoskeletons is roughly equal to the speed of signal transfer for the chloroplast accumulation response. We therefore aim to measure the speed of extension of these filaments when a method of gene transformation has been established for A. capillus-veneris.  相似文献   

15.
Noise-limited frequency signal transmission in gene circuits          下载免费PDF全文
Tan C  Reza F  You L 《Biophysical journal》2007,93(11):3753-3761
To maintain normal physiology, cells must properly process diverse signals arising from changes in temperature, pH, nutrient concentrations, and other factors. Many physiological processes are controlled by temporal aspects of oscillating signals; that is, these signals can encode information in the frequency domain. By modeling simple gene circuits, we analyze the impact of cellular noise on the fidelity and speed of frequency-signal transmission. We find that transmission of frequency signals is "all-or-none", limited by a critical frequency (f(c)). Signals with frequencies f(c) are severely corrupted or completely lost in transmission. We argue that f(c) is an intrinsic property of a gene circuit and it varies with circuit parameters and additional feedback or feedforward regulation. Our results may have implications for understanding signal processing in natural biological networks and for engineering synthetic gene circuits.  相似文献   

16.
Rise time of EPR signal IIvf in chloroplast photosystem II.     
R E Blankenship  A McGuire  K Sauer 《Biochimica et biophysica acta》1977,459(3):617-619
  相似文献   

17.
The chloroplast protein BPG2 functions in brassinosteroid‐mediated post‐transcriptional accumulation of chloroplast rRNA     
Tomoyuki Komatsu  Hiroshi Kawaide  Chieko Saito  Ayumi Yamagami  Setsuko Shimada  Miki Nakazawa  Minami Matsui  Akihiko Nakano  Masafumi Tsujimoto  Masahiro Natsume  Hiroshi Abe  Tadao Asami  Takeshi Nakano 《The Plant journal : for cell and molecular biology》2010,61(3):409-422
  相似文献   

18.
Extensive methylation of chloroplast DNA by a nuclear gene mutation does not affect chloroplast gene transmission in chlamydomonas   总被引:1,自引:0,他引:1  
Paul L. Bolen  David M. Grant  David Swinton  John E. Boynton  Nicholas W. Gillham 《Cell》1982,28(2):335-343
Based on analysis by high pressure liquid chromatography, greater than 35% of the cytosine residues in chloroplast DNA of vegetative cells were found to be methylated constitutively in the nuclear gene mutation (me-1) of Chlamydomonas reinhardtii, which has an otherwise wild-type phenotype. Digestion of chloroplast DNA from vegetative cells and gametes of this mutant with restriction endonucleases Hpa II and Msp I reveals that in the 5′CCGG3′ sequence, CpG is methylated extensively, whereas CpC is only methylated occasionally. Hae III (5′GGCC3′) digestion of the mutant chloroplast DNA also shows extensive methylation of the GpC sequence. In contrast to the results of Sager and colleagues, which show a correlation between methylation of chloroplast DNA and transmission of chloroplast genes in crosses, our results with crosses of the me-1 mutant suggest that extensive chloroplast DNA methylation may be insufficient to account for the pattern of inheritance of chloroplast genes in Chlamydomonas.  相似文献   

19.
Roles of chloroplast RNA polymerase sigma factors in chloroplast development and stress response in higher plants     
Kanamaru K  Tanaka K 《Bioscience, biotechnology, and biochemistry》2004,68(11):2215-2223
  相似文献   

20.
Multi-regional module-based signal transmission in mouse visual cortex     
《Neuron》2022,110(9):1585-1598.e9
  1. Download : Download high-res image (319KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号