首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work was concerned with the numerical simulation of the behaviour of aortic valves whose material can be modelled as non-linear elastic anisotropic. Linear elastic models for the valve leaflets with parameters used in previous studies were compared with hyperelastic models, incorporating leaflet anisotropy with pronounced stiffness in the circumferential direction through a transverse isotropic model. The parameters for the hyperelastic models were obtained from fits to results of orthogonal uniaxial tensile tests on porcine aortic valve leaflets. The computational results indicated the significant impact of transverse isotropy and hyperelastic effects on leaflet mechanics; in particular, increased coaptation with peak values of stress and strain in the elastic limit. The alignment of maximum principal stresses in all models follows approximately the coarse collagen fibre distribution found in aortic valve leaflets. The non-linear elastic leaflets also demonstrated more evenly distributed stress and strain which appears relevant to long-term scaffold stability and mechanotransduction.  相似文献   

2.
All existing constitutive models for heart valve leaflet tissues either assume a uniform transmural stress distribution or utilize a membrane tension formulation. Both approaches ignore layer specific mechanical contributions and the implicit nonuniformity of the transmural stress distribution. To begin to address these limitations, we conducted novel studies to quantify the biaxial mechanical behavior of the two structurally distinct, load bearing aortic valve (AV) leaflet layers: the fibrosa and ventricularis. Strip biaxial tests, with extremely sensitive force sensing capabilities, were further utilized to determine the mechanical behavior of the separated ventricularis layer at very low stress levels. Results indicated that both layers exhibited very different nonlinear, highly anisotropic mechanical behaviors. While the leaflet tissue mechanical response was dominated by the fibrosa layer, the ventricularis contributed double the amount of the fibrosa to the total radial tension and experienced four times the stress level. The strip biaxial test results further indicated that the ventricularis exhibited substantial anisotropic mechanical properties at very low stress levels. This result suggested that for all strain levels, the ventricularis layer is dominated by circumferentially oriented collagen fibers, and the initial loading phase of this layer cannot be modeled as an isotropic material. Histological-based thickness measurements indicated that the fibrosa and ventricularis constitute 41% and 29% of the total layer thickness, respectively. Moreover, the extensive network of interlayer connections and identical strains under biaxial loading in the intact state suggests that these layers are tightly bonded. In addition to advancing our knowledge of the subtle but important mechanical properties of the AV leaflet, this study provided a comprehensive database required for the development of a true 3D stress constitutive model for the native AV leaflet.  相似文献   

3.
We have recently demonstrated that the mitral valve anterior leaflet (MVAL) exhibited minimal hysteresis, no strain rate sensitivity, stress relaxation but not creep (Grashow et al., 2006, Ann Biomed Eng., 34(2), pp. 315-325; Grashow et al., 2006, Ann Biomed. Eng., 34(10), pp. 1509-1518). However, the underlying structural basis for this unique quasi-elastic mechanical behavior is presently unknown. As collagen is the major structural component of the MVAL, we investigated the relation between collagen fibril kinematics (rotation and stretch) and tissue-level mechanical properties in the MVAL under biaxial loading using small angle X-ray scattering. A novel device was developed and utilized to perform simultaneous measurements of tissue level forces and strain under a planar biaxial loading state. Collagen fibril D-period strain (epsilonD) and the fibrillar angular distribution were measured under equibiaxial tension, creep, and stress relaxation to a peak tension of 90 N/m. Results indicated that, under equibiaxial tension, collagen fibril straining did not initiate until the end of the nonlinear region of the tissue-level stress-strain curve. At higher tissue tension levels, epsilonD increased linearly with increasing tension. Changes in the angular distribution of the collagen fibrils mainly occurred in the tissue toe region. Using epsilonD, the tangent modulus of collagen fibrils was estimated to be 95.5+/-25.5 MPa, which was approximately 27 times higher than the tissue tensile tangent modulus of 3.58+/-1.83 MPa. In creep tests performed at 90 N/m equibiaxial tension for 60 min, both tissue strain and epsilonD remained constant with no observable changes over the test length. In contrast, in stress relaxation tests performed for 90 min epsilonD was found to rapidly decrease in the first 10 min followed by a slower decay rate for the remainder of the test. Using a single exponential model, the time constant for the reduction in collagen fibril strain was 8.3 min, which was smaller than the tissue-level stress relaxation time constants of 22.0 and 16.9 min in the circumferential and radial directions, respectively. Moreover, there was no change in the fibril angular distribution under both creep and stress relaxation over the test period. Our results suggest that (1) the MVAL collagen fibrils do not exhibit intrinsic viscoelastic behavior, (2) tissue relaxation results from the removal of stress from the fibrils, possibly by a slipping mechanism modulated by noncollagenous components (e.g. proteoglycans), and (3) the lack of creep but the occurrence of stress relaxation suggests a "load-locking" behavior under maintained loading conditions. These unique mechanical characteristics are likely necessary for normal valvular function.  相似文献   

4.
Despite continued progress in the treatment of aortic valve (AV) disease, current treatments continue to be challenged to consistently restore AV function for extended durations. Improved approaches for AV repair and replacement rests upon our ability to more fully comprehend and simulate AV function. While the elastic behavior the AV leaflet (AVL) has been previously investigated, time-dependent behaviors under physiological biaxial loading states have yet to be quantified. In the current study, we performed strain rate, creep, and stress-relaxation experiments using porcine AVL under planar biaxial stretch and loaded to physiological levels (60 N/m equi-biaxial tension), with strain rates ranging from quasi-static to physiologic. The resulting stress-strain responses were found to be independent of strain rate, as was the observed low level of hysteresis ( approximately 17%). Stress relaxation and creep results indicated that while the AVL exhibited significant stress relaxation, it exhibited negligible creep over the 3h test duration. These results are all in accordance with our previous findings for the mitral valve anterior leaflet (MVAL) [Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P., 2006a. Planar biaxial creep and stress relaxatin of the mitral valve anterior leaflet. Annals of Biomedical Engineering 34 (10), 1509-1518; Grashow, J.S., Yoganathan, A.P., Sacks, M.S., 2006b. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering 34 (2), 315-325], and support our observations that valvular tissues are functionally anisotropic, quasi-elastic biological materials. These results appear to be unique to valvular tissues, and indicate an ability to withstand loading without time-dependent effects under physiologic loading conditions. Based on a recent study that suggested valvular collagen fibrils are not intrinsically viscoelastic [Liao, J., Yang, L., Grashow, J., Sacks, M.S., 2007. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. Journal of Biomechanical Engineering 129 (1), 78-87], we speculate that the mechanisms underlying this quasi-elastic behavior may be attributed to inter-fibrillar structures unique to valvular tissues. These mechanisms are an important functional aspect of native valvular tissues, and are likely critical to improve our understanding of valvular disease and help guide the development of valvular tissue engineering and surgical repair.  相似文献   

5.
To date, there are no constitutive models for either the natural or bioprosthetic aortic valve (AV), in part due to experimental complications related to the AV's small size and heterogeneous fibrous structure. In this study, we developed specialized biaxial testing techniques for the AV cusp, including a method to determine the local structure-strain relationship to assess the effects of boundary tethering forces. Natural and glutaraldehyde (GL) treated cusps were subjected to an extensive biaxial testing protocol in which the ratios of the axial tensions were held at constant values. Results indicated that the local fiber architecture clearly dominated cuspal deformation, and that the tethering effects at the specimen boundaries were negligible. Due to unique aspects of cuspal fiber architecture, the most uniform region of deformation was found at the lower portion as opposed to the center of the cuspal specimen. In general, the circumferential strains were much smaller than the radial strains, indicating a profound degree of mechanical anisotropy, and that natural cusps were significantly more extensible than the GL treated cusps. Strong mechanical coupling between biaxial stretch axes produced negative circumferential strains under equibiaxial tension. Further, the large radial strains observed could not be explained by uncrimping of the collagen fibers, but may be due to large rotations of the highly aligned, circumferential-oriented collagen fibers in the fibrosa. In conclusion, this study provides new insights into the AV cusp's structure-function relationship in addition to requisite data for constitutive modeling.  相似文献   

6.
We have formulated the first constitutive model to describe the complete measured planar biaxial stress-strain relationship of the native and glutaraldehyde-treated aortic valve cusp using a structurally guided approach. When applied to native, zero-pressure fixed, and low-pressure fixed cusps, only three parameters were needed to simulate fully the highly anisotropic, and nonlinear in-plane biaxial mechanical behavior. Differences in the behavior of the native and zero- and low-pressure fixed cusps were found to be primarily due to changes in the effective fiber stress-strain behavior. Further, the model was able to account for the effects of small (< 10 deg) misalignments in the cuspal specimens with respect to the biaxial test axes that increased the accuracy of the model material parameters. Although based upon a simplified cuspal structure, the model underscored the role of the angular orientation of the fibers that completely accounted for extreme mechanical anisotropy and pronounced axial coupling. Knowledge of the mechanics of the aortic cusp derived from this model may aid in the understanding of fatigue damage in bioprosthetic heart valves and, potentially, lay the groundwork for the design of tissue-engineered scaffolds for replacement heart valves.  相似文献   

7.
In this work, we examine the dynamics of fluid flow in a mechanical heart valve when the solid inertia and leaflet compliance are important. The fluid is incompressible and Newtonian, and the leaflet is an incompressible neo-Hookean material. In the case of an inertialess leaflet, we find that the maximum valve opening angle and the time that the valve remains closed increase as the shear modulus of the leaflet decreases. More importantly, the regurgitant volume decreases with decreasing shear modulus. When we examined the forces exerted on the leaflet, we found that the downward motion of the leaflet is initiated by a vertical force exerted on its right side and, later on, by a vertical force exerted on the top side of the leaflet. In the case of solid inertia, we find that the maximum valve opening angle and the regurgitant volume are larger than in the case of an inertialess leaflet. These results highlight the importance of solid compliance in the dynamics of blood flow in a mechanical heart valve. More importantly, they indicate that mechanical heart valves with compliant leaflets may have smaller regurgitant volumes and smaller shear stresses than the ones with rigid leaflets.  相似文献   

8.
9.
Utilization of novel biologically-derived biomaterials in bioprosthetic heart valves (BHV) requires robust constitutive models to predict the mechanical behavior under generalized loading states. Thus, it is necessary to perform rigorous experimentation involving all functional deformations to obtain both the form and material constants of a strain-energy density function. In this study, we generated a comprehensive experimental biaxial mechanical dataset that included high in-plane shear stresses using glutaraldehyde treated bovine pericardium (GLBP) as the representative BHV biomaterial. Compared to our previous study (Sacks, JBME, v.121, pp. 551-555, 1999), GLBP demonstrated a substantially different response under high shear strains. This finding was underscored by the inability of the standard Fung model, applied successfully in our previous GLBP study, to fit the high-shear data. To develop an appropriate constitutive model, we utilized an interpolation technique for the pseudo-elastic response to guide modification of the final model form. An eight parameter modified Fung model utilizing additional quartic terms was developed, which fitted the complete dataset well. Model parameters were also constrained to satisfy physical plausibility of the strain energy function. The results of this study underscore the limited predictive ability of current soft tissue models, and the need to collect experimental data for soft tissue simulations over the complete functional range.  相似文献   

10.
11.
12.
The biomechanical environment of the optic nerve head (ONH), of interest in glaucoma, is strongly affected by the biomechanical properties of sclera. However, there is a paucity of information about the variation of scleral mechanical properties within eyes and between individuals. We thus used biaxial testing to measure scleral stiffness in human eyes. Ten eyes from 5 human donors (age 55.4±3.5 years; mean±SD) were obtained within 24 h of death. Square scleral samples (6 mm on a side) were cut from each ocular quadrant 3–9 mm from the ONH centre and were mechanically tested using a biaxial extensional tissue tester (BioTester 5000, CellScale Biomaterials Testing, Waterloo). Stress–strain data in the latitudinal (toward the poles) and longitudinal (circumferential) directions, here referred to as directions 1 and 2, were fit to the four-parameter Fung constitutive equation W=c(eQ?1), where Q=c1E112+c2E222+2c3E11E22 and W, c’s and Eij are the strain energy function, material parameters and Green strains, respectively. Fitted material parameters were compared between samples. The parameter c3 ranged from 10?7 to 10?8, but did not contribute significantly to the accuracy of the fitting and was thus fixed at 10?7. The products c?c1 and c?c2, measures of stiffness in the 1 and 2 directions, were 2.9±2.0 and 2.8±1.9 MPa, respectively, and were not significantly different (two-sided t-test; p=0.795). The level of anisotropy (ratio of stiffness in orthogonal directions) was 1.065±0.33. No statistically significant correlations between sample thickness and stiffness were found (correlation coefficients=?0.026 and ?0.058 in directions 1 and 2, respectively). Human sclera showed heterogeneous, near-isotropic, nonlinear mechanical properties over the scale of our samples.  相似文献   

13.
This paper presents a finite element formulation suitable for large-strain modeling of biological tissues and uses this formulation to implement an accurate finite element model for mitral valve leaflet tissue. First, an experimentally derived strain energy function is obtained from literature. This function is implemented in finite elements using the mixed pressure-displacement formulation. A modification is made to aid in maintaining positive definiteness of the stiffness matrix at low strains. The numerical implementation is shown to be accurate in representing the analytical model of material behavior. The mixed formulation is useful for modeling of soft biological tissues in general, and the model presented here is applicable to finite element simulation of mitral valve mechanics.  相似文献   

14.
Bovine pericardium (BP) is a source of natural biomaterials with a wide range of clinical applications. In the present work we studied the dynamic mechanical behavior of BP in native form and under specific enzymatic degradation with chondroitinase ABC extracted a 17% of the total glycosaminoglycans (GAGs). The GAGs content of native BP was composed mainly from hyaluronan, chondroitine sulfate and dermatan sulfate. Dynamic tensile mechanical testing of BP in the frequency range 0.1-20 Hz demonstrated its viscoelastic nature. The storage modulus was equal to 6.5 (native) and 5.5 (degraded) MPa initially, increased in the region nearby 1 Hz by about 15%. This was related with physical resonance mechanisms activated in this frequency region. The high modulus (modulus of the high linear phase of stress-strain) was equal to 14 (native) and 10 (degraded) MPa, dropped at high frequencies to 7 and 5 Mpa, respectively. The damping, expressed by the hysteresis, was equal to 20% of the loading energy, changed exponentially with the frequency to 30% at 20 Hz. It seemed that of the elastic mechanical parameters, the storage modulus and the high modulus were even slightly dropped as a result of degradation. As a final conclusion, there was evident that GAGs may play a non-negligible role in the dynamic mechanical behavior of BP and, probably in other soft tissue biomechanics. It is suggested that the GAGs content may be considered during the design and chemical modification of biomaterials based on BP and other soft tissues.  相似文献   

15.
While the mechanical behaviors of the fibrosa and ventricularis layers of the aortic valve (AV) leaflet are understood, little information exists on their mechanical interactions mediated by the GAG-rich central spongiosa layer. Parametric simulations of the interlayer interactions of the AV leaflets in flexure utilized a tri-layered finite element (FE) model of circumferentially oriented tissue sections to investigate inter-layer sliding hypothesized to occur. Simulation results indicated that the leaflet tissue functions as a tightly bonded structure when the spongiosa effective modulus was at least 25 % that of the fibrosa and ventricularis layers. Novel studies that directly measured transmural strain in flexure of AV leaflet tissue specimens validated these findings. Interestingly, a smooth transmural strain distribution indicated that the layers of the leaflet indeed act as a bonded unit, consistent with our previous observations (Stella and Sacks in J Biomech Eng 129:757–766, 2007) of a large number of transverse collagen fibers interconnecting the fibrosa and ventricularis layers. Additionally, when the tri-layered FE model was refined to match the transmural deformations, a layer-specific bimodular material model (resulting in four total moduli) accurately matched the transmural strain and moment-curvature relations simultaneously. Collectively, these results provide evidence, contrary to previous assumptions, that the valve layers function as a bonded structure in the low-strain flexure deformation mode. Most likely, this results directly from the transverse collagen fibers that bind the layers together to disable physical sliding and maintain layer residual stresses. Further, the spongiosa may function as a general dampening layer while the AV leaflets deforms as a homogenous structure despite its heterogeneous architecture.  相似文献   

16.
Multiaxial failure properties of trabecular bone are important for modeling of whole bone fracture and can provide insight into structure-function relationships. There is currently no consensus on the most appropriate form of multiaxial yield criterion for trabecular bone. Using experimentally validated, high-resolution, non-linear finite element models, biaxial plain strain boundary conditions were applied to seven bovine tibial specimens. The dependence of multiaxial yield properties on volume fraction was investigated to quantify the interspecimen heterogeneity in yield stresses and strains. Two specimens were further analyzed to determine the yield properties for a wide range of biaxial strain loading conditions. The locations and quantities of tissue level yielding were compared for on-axis, transverse, and biaxial apparent level yielding to elucidate the micromechanical failure mechanisms. As reported for uniaxial loading of trabecular bone, the yield strains in multiaxial loading did not depend on volume fraction, whereas the yield stresses did. Micromechanical analysis indicated that the failure mechanisms in the on-axis and transverse loading directions were mostly independent. Consistent with this, the biaxial yield properties were best described by independent curves for on-axis and transverse loading. These findings establish that the multiaxial failure of trabecular bone is predominantly governed by the strain along the loading direction, requiring separate analytical expressions for each orthotropic axis to capture the apparent level yield behavior.  相似文献   

17.
We measured leaflet displacements and used inverse finite-element analysis to define, for the first time, the material properties of mitral valve (MV) leaflets in vivo. Sixteen miniature radiopaque markers were sewn to the MV annulus, 16 to the anterior MV leaflet, and 1 on each papillary muscle tip in 17 sheep. Four-dimensional coordinates were obtained from biplane videofluoroscopic marker images (60 frames/s) during three complete cardiac cycles. A finite-element model of the anterior MV leaflet was developed using marker coordinates at the end of isovolumic relaxation (IVR; when the pressure difference across the valve is approximately 0), as the minimum stress reference state. Leaflet displacements were simulated during IVR using measured left ventricular and atrial pressures. The leaflet shear modulus (G(circ-rad)) and elastic moduli in both the commisure-commisure (E(circ)) and radial (E(rad)) directions were obtained using the method of feasible directions to minimize the difference between simulated and measured displacements. Group mean (+/-SD) values (17 animals, 3 heartbeats each, i.e., 51 cardiac cycles) were as follows: G(circ-rad) = 121 +/- 22 N/mm2, E(circ) = 43 +/- 18 N/mm2, and E(rad) = 11 +/- 3 N/mm2 (E(circ) > E(rad), P < 0.01). These values, much greater than those previously reported from in vitro studies, may result from activated neurally controlled contractile tissue within the leaflet that is inactive in excised tissues. This could have important implications, not only to our understanding of mitral valve physiology in the beating heart but for providing additional information to aid the development of more durable tissue-engineered bioprosthetic valves.  相似文献   

18.
19.
Aortic valve tissue exhibits highly nonlinear, anisotropic, and heterogeneous material behavior due to its complex microstructure. A thorough understanding of these characteristics permits us to develop numerical models that can shed insight on the function of the aortic valve in health and disease. Herein, we take a closer look at consistently capturing the observed physical response of aortic valve tissue in a continuum mechanics framework. Such a treatment is the first step in developing comprehensive multiscale and multiphysics models.We highlight two important aspects of aortic valve tissue behavior: the role of the collagen fiber microstructure and the native prestressing. We propose a model that captures these two features as well as the heterogeneous layer-scale topology of the tissue. We find the model can reproduce the experimentally observed multiscale mechanical behavior in a manner that provides intuition on the underlying mechanics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号