首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Background: Several studies have documented the variation in species diversity patterns along elevational gradients in the Himalaya, but few have reported the evolutionary and biogeographic processes behind these patterns.

Aims: To understand whether evolutionary history and phylogeny have any role in structuring plant species communities along an elevational gradient in the Sikkim Himalaya.

Methods: We used data on endemic plant species occurrence from primary and secondary sources to construct family-level phylogenetic supertrees for different growth forms with the help of Phylomatic tool of Phylocom. These phylogenetic supertrees were used as a base for testing phylogenetic diversity (PD), niche conservatism, diversification time patterns and phylogenetic structure of various plant growth forms along an elevational gradient.

Results: PD was the highest at mid-elevations for all growth forms and PD had a significant positive correlation with endemic species richness. Species at mid-elevations were dominated by the ancestral/primitive taxa. There was phylogenetic clustering at higher elevations and phylogenetic overdispersion at lower and mid-elevations for the majority of the growth forms.

Conclusions: Time-for-speciation effect and niche conservatism along elevation (retention of niche-related ancestral elevational distribution over evolutionary time scale by species) together determine plant species diversity patterns in the Himalaya.  相似文献   

2.
The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic sampling was employed to collect vegetation and environmental data along the elevation gradient.We found that plant species richness declines monotonically from low to high elevations.Specifically,vascular plant species richness and diversity were lower in the Afroalpine grassland(high elevation)than in the Dry evergreen Afromontane forest and Ericaceous forest(low elevations).In contrast,endemic vascular plant richness was significantly higher in the Afroalpine grassland than in the Dry evergreen Afromontane forest and Ericaceous forest.Elevation showed a significant impact on the richness,diversity,and endemism of vascular plants.According to Sorensen's coefficient,the similarity between Dry evergreen Afromontane forest and Ericaceous forest vegetation types is higher(32%)than the similarity between Ericaceous forest and Afroalpine grassland(18%).Only 5%similarity was recorded between the Dry evergreen Afromontane forest and Afroalpine grassland.Growth forms showed different elevationai richness patterns.Trees and liana increased monotonically up to 3300 m.Shrub and herb richness patterns followed a hump-shaped and inverted hump-shaped pattern along the elevation gradient.The elevation patterns of vascular plant species richness,diversity,and growth form in the present study may be attributed to differences in management intensity,spatial heterogeneity,microclimatic variations,and anthropogenic disturbances.  相似文献   

3.

Background

Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive.

Methods and Principal Findings

We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world''s tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport''s rule for the birds of Sikkim region of the Himalaya.

Conclusions and Significance

This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention.  相似文献   

4.
We conducted field surveys in 807 quadrats to evaluate the elevational belts, boundary and richness patterns of ferns and lycophytes in the temperate region of central Japan. We analysed fern species assemblages at 100 m elevational steps by cluster analysis and tested the number of upper and lower boundaries for elevational intervals against a null model of random distribution of elevational limits. We compared the pattern of fern species richness along the elevational gradients in central Japan with patterns in several locations to evaluate the fern flora in central Japan in relation to the rest of the world. We recorded 261 ferns species in total, which is one-third of the Japanese ferns. We found clear elevational boundaries of fern assemblages at 900 and 1,800 m and three fern elevational zones, which corresponded well to the elevational limits of forest types in central Japan. The pattern of fern species richness in central Japan was an asymmetric hump-shaped pattern that peaked close to the sea level, with the peak of local richness at lower elevations than that of regional richness. We found that the peak of fern species richness along the elevational gradient in Japan was located at lower elevations than that of fern elevational patterns in several locations around the world.  相似文献   

5.
新疆天山南坡中段种子植物区系垂直分布格局分析   总被引:2,自引:0,他引:2  
对植物多样性垂直分布格局及其维持机制的研究可以有效揭示植物物种多样性分布特征及其环境影响因子。本文通过野外调查、查阅标本并结合相关文献资料,对天山南坡中段种子植物区系沿海拔梯度的分布格局进行了系统研究。结果显示,在大区域尺度上,科属种的物种丰富度随海拔升高均呈先增加后减少的趋势,且最高值出现在中低海拔1900~2000 m处;不同生活型植物沿海拔梯度的变化格局有所不同,其中,乔木、一年生草本、藤本及寄生植物表现出随海拔升高物种丰富度逐渐降低的趋势,灌木、多年生草本及二年生草本植物物种丰富度则呈先增加后减少的变化趋势;从植物区系地理成分来看,世界分布所占的比重沿海拔梯度升高呈先增加后减少的趋势;温带地理成分所占的比重沿海拔梯度升高呈缓慢上升趋势;古地中海地理成分所占的比重沿海拔梯度升高呈先增加后减少然后再增加的变化趋势;热带地理成分所占的比重沿海拔升高呈逐渐下降的趋势;东亚地理成分所占的比重沿海拔梯度升高呈先增加后减少然后再增加的变化趋势。对该分布格局与当地干旱的气候条件及海拔梯度上热量和水分条件的变化相适应。  相似文献   

6.
群落分类多样性和功能多样性的海拔格局研究, 是了解生物多样性空间分布现状、揭示多样性维持和变化机制的重要途径。当前对水生昆虫分类多样性和功能多样性沿海拔梯度分布格局, 及其尺度依赖性依旧缺乏深入研究。本文基于2013-2018年在云南澜沧江流域500-3,900 m海拔梯度共149个溪流点位的水生昆虫群落调查数据, 利用线性或二次回归模型探索并比较了局部尺度(点位尺度)和不同区域尺度(100 m、150 m、200 m、250 m海拔段)的分类多样性指数(物种丰富度指数、Simpson多样性指数和物种均匀度指数)和功能多样性指数(树状图功能多样性指数(dbFD)、Rao二次熵指数(RaoQ)和功能均匀度指数(FEve))的海拔格局。结果表明, 在局部尺度, 物种丰富度指数和dbFD指数沿海拔梯度均无显著分布特征, Simpson多样性指数、RaoQ指数、物种均匀度指数和FEve指数沿海拔梯度呈现U型或者单调递减趋势。在区域尺度, 随着区域海拔带宽度的增加, 物种丰富度指数沿海拔呈不显著的单调递减格局, 但dbFD指数沿海拔分布由U型转变为单调递减趋势; Simpson多样性指数和RaoQ指数沿海拔梯度由显著U型趋势转变为无显著分布特征; 物种均匀度指数沿海拔梯度无显著分布特征, 但FEve指数呈显著增加的海拔格局。综上, 群落分类多样性指数和功能多样性指数沿海拔梯度分布存在局部和区域尺度的空间差异, 但区域尺度下二者海拔格局随海拔带宽度的增加存在一定程度的一致性。  相似文献   

7.
8.
Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the relationships betweenspecies richness with environmental factors along altitudinal gradients, it was necessary to quantify the scale dependencies of environmental factors in the sampling design or when establishing non-linear models.  相似文献   

9.
Describing spatial variation in species richness and understanding its links to ecological mechanisms are complementary approaches for explaining geographical patterns of richness. The study of elevational gradients holds enormous potential for understanding the factors underlying global diversity. This paper investigates the pattern of species richness and range-size distribution of epiphytic bryophytes along an elevational gradient in Marojejy National Park, northeast Madagascar. The main objectives are to describe bryophyte species composition and endemism in Marojejy National Park, to describe the species richness and distribution patterns of epiphytic bryophytes along an elevational gradient from 250 m to 2050 m and to evaluate the explanatory value of environmental variables for the observed patterns. Bryophyte samples were collected following a nested design with four hierarchical levels: elevational belts, plots, quadrats, and microplots. In total, 254 epiphytic bryophyte species were recorded, comprising 157 liverworts and 97 mosses. Twenty-three of these are endemic to Madagascar. Species richness exhibits a hump-shaped pattern along the elevational gradient, peaking at 1,250 m. Eighty-seven percent of the total recorded species have a range distribution lower than 1,000 m, at which point 36% are restricted to these single elevations. Our results suggest that mean temperature, relative humidity, and vapor pressure deficit play important roles in shaping the richness pattern observed in this study. While the liverwort richness pattern did not correlate to vapor pressure deficit and responded only weakly to relative humidity, the richness pattern shown by mosses correlates well with mean temperature, relative humidity, and vapor pressure deficit.  相似文献   

10.
11.
Two distinct diversity patterns are observed along tropical elevations: (a) decreasing number of species toward high elevations and (b) a hump-shaped pattern with the peak at mid-elevations. As diversity is likely supported by ecological capacity of the environment, decomposition of the overall richness into ecological facets and considering number of individuals within them is crucial for the proper understanding of richness patterns. We examined abundances of different avian guilds along the forested part of the elevational gradient on Mt. Cameroon. We (a) compared richness and abundance elevational patterns, (b) assessed the effective contribution of multiple guilds to richness and abundance patterns, and (c) assessed to what extent observed abundances of guilds differed from those expected by chance. We sampled birds in 2011–2015 during the dry season at seven elevations (30 m, 350 m, 650 m, 1100 m, 1500 m, 1850 m, 2200 m a.s.l.). For each assemblage, we estimated proportions of species and individuals that use particular diets, foraging modes, and feeding strata. We found that a rather decreasing pattern of species richness turns into a hump-shaped one if we look at the total abundances, implying different mechanisms behind these patterns. The number of species and individuals thus do not seem to be directly related, contrary to “the more-individuals hypothesis.” Abundances of foliage gleaners at mid-elevations, nectarivores at high elevations, and frugivores at low elevations deviated from random expectations. Our results imply that parts of ecological space are filled separately by bird species and individuals along elevation of Mt. Cameroon.  相似文献   

12.
Mountains provide a unique opportunity to study drivers of species richness across relatively short elevation gradients. However, few studies have reported elevational patterns for arid mountains. We studied elevation‐richness pattern along an elevational gradient at the arid mountain Gebel Elba, south‐east of Egypt, expecting a unimodal richness pattern. We sampled 133 vegetation plots (10 × 10 m) in four wadis along an elevational gradient from 130 to 680 m which represents the transition from desert to mountain wadi systems. We used generalised additive models to describe the relationship between elevation and plant species richness. We found a strong increase in species richness and Shannon diversity at low elevations followed by a plateau at mid‐ to high elevations. When we analysed each tributary as a single gradient, no pattern was found. The analysed elevational gradient seems to be a major stress gradient in terms of temperature and water availability, exhibiting a trend of increasing species richness that changes to a plateau pattern; a pattern rarely observed for wadi systems in arid mountains. We discuss the observed pattern with the climatic stress hypothesis and the environmental heterogeneity hypothesis as possible explanations for the pattern.  相似文献   

13.
Rebecca J. Rowe 《Ecography》2009,32(3):411-422
The mechanisms shaping patterns of biodiversity along spatial gradients remain poorly known and controversial. Hypotheses have emphasized the importance of both environmental and spatial factors. Much of the uncertainty about the relative role of these processes can be attributed to the limited number of comparative studies that evaluate multiple potential mechanisms. This study examines the relative importance of six variables: temperature, precipitation, productivity, habitat heterogeneity, area, and the mid-domain effect on patterns of species richness for non-volant small mammals along four neighboring mountain ranges in central Utah. Along each of these elevational gradients, a hump-shaped relationship of richness with elevation is evident. This study evaluates whether the processes shaping this common pattern are also common to all gradients. Model selection indicates that no one factor or set of factors best explains patterns of species richness across all gradients, and drivers of diversity may vary seasonally. These findings suggest that commonality in the pattern of species richness, even among elevational gradients with a similar biogeographic history and fauna, cannot be attributed to a simple universal explanation.  相似文献   

14.
There has been growing recent use of elevational gradients as tools for assessing effects of temperature changes on vegetation properties, because these gradients enable temperature effects to be considered over larger spatial and temporal scales than is possible through conventional experiments. While many studies have explored the direct effects of temperature, the indirect effects of temperature through its long‐term influence on soil abiotic or biotic properties remain essentially unexplored. We performed two climate chamber experiments using soils from a subarctic elevational gradient in Abisko, Sweden to investigate the direct effects of temperature, and indirect effects of temperature via soil legacies, on growth of two grass species. The soils were collected from each of two vegetation types (heath, dominated by dwarf shrubs, and meadow, dominated by graminoids and herbs) at each of three elevations. We found that plants responded to both the direct effect of temperature and its indirect effect via soil legacies, and that direct and indirect effects were largely decoupled. Vegetation type was a major determinant of plant responses to both the direct and indirect effects of temperature; responses to soils from increasing elevation were stronger and showed a more linear decline for meadow than for heath soils. The influence of soil biota on plant growth was independent of elevation, with a positive influence across all elevations regardless of soil origin for meadow soils but not for heath soils. Taken together, this means that responses of plant growth to soil legacy effects of temperature across the elevational gradient were driven primarily by soil abiotic, and not biotic, factors. These findings emphasize that vegetation type is a strong determinant of how temperature variation across elevational gradients impacts on plant growth, and highlight the need for considering both direct and indirect effects of temperature on plant responses to future climate change.  相似文献   

15.
Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid‐altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump‐shaped species richness patterns were observed for several growth forms. A mid‐altitudinal richness peak was the result of a combination of climate‐related water–energy dynamics, species–area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high‐mountain regions of the tropics.  相似文献   

16.
Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone drives β-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in β-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity.  相似文献   

17.
We investigated elevational richness patterns of three moth groups (Erebidae, Geometridae, and Noctuidae) along four elevational gradients located on one northern and three southern mountains in South Korea, as well as the effects of plants and climatic factors on the diversity patterns of moths. Moths were collected with an ultraviolet light trap at 32 sites from May through October, 2013. Plant species richness and mean temperatures for January and June were acquired. Observed and estimated moth species richness was calculated and the diversity patterns with null models were compared. Species richness along four elevational gradients peaked at mid-elevations, whereas deviations occurred at elevations below mid-peak in the southern mountains and elevations higher than mid-peak on the northern mountain. Species richness curves of three moth groups also peaked at mid-elevations throughout South Korea. However, the species richness curves for Erebidae were positively skewed, indicating that a preference for lowlands, whereas curves of the Geometridae were negatively skewed, indicating a preference for highlands. The mid-peak diversity pattern between plants and moths on the Korean mountains showed an elevational breadth that overlapped between 800 and 900 m. Multiple regression analysis revealed that plant species richness and January mean temperature significantly influenced moth species richness and abundance. The rapid increase in mean annual temperature in the Korean peninsula and the unimodal elevational gradients of moths across the country suggest that an uphill shift in peak optimum elevation and changes in the highest peak of the curve will occur in the future.  相似文献   

18.
Although elevational patterns of species richness have been well documented, how the drivers of richness gradients vary across ecological guilds has rarely been reported. Here, we examined the effects of spatial factors (area and mid‐domain effect; MDE) and environmental factors, including metrics of climate, productivity, and plant species richness on the richness of breeding birds across different ecological guilds defined by diet and foraging strategy. We surveyed 12 elevation bands at intervals of 300 m between 1,800 and 5,400 m a.s.l using line‐transect methods throughout the wet season in the central Himalaya, China. Multiple regression models and hierarchical partitioning were used to assess the relative importance of spatial and environmental factors on overall bird richness and guild richness (i.e., the richness of species within each guild). Our results showed that richness for all birds and most guilds displayed hump‐shaped elevational trends, which peaked at an elevation of 3,300–3,600 m, although richness of ground‐feeding birds peaked at a higher elevation band (4,200–4,500 m). The Normalized Difference Vegetation Index (NDVI)—an index of primary productivity—and habitat heterogeneity were important factors in explaining overall bird richness as well as that of insectivores and omnivores, with geometric constraints (i.e., the MDE) of secondary importance. Granivore richness was not related to primary production but rather to open habitats (granivores were negatively influenced by habitat heterogeneity), where seeds might be abundant. Our findings provide direct evidence that the richness–environment relationship is often guild‐specific. Taken together, our study highlights the importance of considering how the effects of environmental and spatial factors on patterns of species richness may differ across ecological guilds, potentially leading to a deeper understanding of elevational diversity gradients and their implications for biodiversity conservation.  相似文献   

19.
Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump-shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation- and latitude-driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion.  相似文献   

20.
Understanding diversity patterns along environmental gradients and their underlying mechanisms is a major topic in current biodiversity research. In this study, we investigate for the first time elevational patterns of vascular plant species richness and endemism on a long-isolated continental island (Crete) that has experienced extensive post-isolation mountain uplift. We used all available data on distribution and elevational ranges of the Cretan plants to interpolate their presence between minimum and maximum elevations in 100-m elevational intervals, along the entire elevational gradient of Crete (0–2400 m). We evaluate the influence of elevation, area, mid-domain effect, elevational Rapoport effect and the post-isolation mountain uplift on plant species richness and endemism elevational patterns. Furthermore, we test the influence of the island condition and the post-isolation mountain uplift to the elevational range sizes of the Cretan plants, using the Peloponnese as a continental control area. Total species richness monotonically decreases with increasing elevation, while endemic species richness has a unimodal response to elevation showing a peak at mid-elevation intervals. Area alone explains a significant amount of variation in species richness along the elevational gradient. Mid-domain effect is not the underlying mechanism of the elevational gradient of plant species richness in Crete, and Rapoport''s rule only partly explains the observed patterns. Our results are largely congruent with the post-isolation uplift of the Cretan mountains and their colonization mainly by the available lowland vascular plant species, as high-elevation specialists are almost lacking from the Cretan flora. The increase in the proportion of Cretan endemics with increasing elevation can only be regarded as a result of diversification processes towards Cretan mountains (especially mid-elevation areas), supported by elevation-driven ecological isolation. Cretan plants have experienced elevational range expansion compared to the continental control area, as a result of ecological release triggered by increased species impoverishment with increasing elevation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号