首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Effect of silicon deficiency on secondary cell wall synthesis in rice leaf   总被引:1,自引:0,他引:1  
Rice (Oryza sativa L.) is a typical Si-accumulating plant and is able to accumulate Si up to >10?% of shoot dry weight. The cell wall has been reported to become thicker under Si-deficient condition. To clarify the relationship between Si accumulation and cell wall components, the physical properties of, and macromolecular components and Si content in, the pectic, hemicellulosic, and cellulosic fractions prepared from rice seedlings grown in hydroponics with or without 1.5?mM silicic acid were analyzed. In the absence of Si (the ?Si condition), leaf blades drooped, but physical properties were enhanced. Sugar content in the cellulosic fraction and lignin content in the total cell wall increased under ?Si condition. After histochemical staining, there was an increase in cellulose deposition in short cells and the cell layer just beneath the epidermis in the ?Si condition, but no significant change in the pattern of lignin deposition. Expression of the genes involved in secondary cell wall synthesis, OsCesA4, OsCesA7, OsPAL, OsCCR1 and OsCAD6 was up-regulated under ?Si condition, but expression of OsCesA1, involved in primary cell wall synthesis, did not increase. These results suggest that an increase in secondary cell wall components occurs in rice leaves to compensate for Si deficiency.  相似文献   

3.
茎秆机械强度影响植株抗倒伏能力, 是备受关注的重要农艺性状之一。与野生型相比, 水稻(Oryza sativa)脆秆隐性突变体bc-s1茎秆抗折力和抗张力分别降低31.1%和67.2%, 茎秆纤维素和木质素含量分别降低24.97%和增高38.82%。细胞学分析显示, bc-s1茎秆厚壁细胞发生不规则变化, 次生壁增厚受阻。通过图位克隆和测序分析, 初步确定bc-s1突变体中纤维素合成酶催化亚基Os09g25490/OsCesA9基因第1外显子的第28个碱基G突变为A。该等位突变体的获得为进一步揭示OsCesA9调控细胞壁建成的生物学功能提供了新的研究材料。  相似文献   

4.
5.
Tobias CM  Chow EK 《Planta》2005,220(5):678-688
Analysis of lignification in rice has been facilitated by the availability of the recently completed rice genome sequence, and rice will serve as an important model for understanding the relationship of grass lignin composition to cell wall digestibility. Cinnamyl-alcohol dehydrogenase (CAD) is an enzyme important in lignin biosynthesis. The rice genome contains 12 distinct genes present at nine different loci that encode products with significant similarity to CAD. The rice gene family is diverse with respect to other angiosperm and gymnosperm CAD genes isolated to date and includes one member (OsCAD6) that contains a peroxisomal targeting signal and is substantially diverged relative to other family members. Four closely related family members (OsCAD8A–D) are present at the same locus and represent the product of a localized gene duplication and inversion. Promoter-reporter gene fusions to OsCAD2, an orthologue of the CAD gene present at the bm1 (brown midrib 1) locus of maize, reveal that in rice expression is associated with vascular tissue in aerial parts of the plant and is correlated with the onset of lignification. In root tissue, expression is primarily in the cortical parenchyma adjacent to the exodermis and in vascular tissue.  相似文献   

6.
以抗倒伏品种‘南粳44’、‘武运粳7号’与不抗倒伏品系‘宁7412’为试验材料,通过对水稻不同生育期茎秆硅、钾、钙、镁含量及可溶性糖含量的测定,结合氮钾肥配比试验,研究了水稻不同生育期茎秆硅、钾、钙、镁含量及可溶性糖含量的变化及其与茎秆抗倒伏能力的关系。结果表明:水稻茎秆的硅、钙、镁含量及可溶性糖含量随生育进程呈上升趋势,而茎秆的钾含量呈现先降后升的趋势。在不同施肥水平条件下,水稻茎秆的硅、钾、钙、镁含量及可溶性糖含量存在一定的差异。抗倒伏品种‘南粳44’和‘武运粳7号’茎秆基部抗折力较强,施肥对水稻茎秆基部抗折力有一定的影响。水稻生殖生育期茎秆的硅含量、可溶性糖含量与茎秆基部抗折力呈极显著正相关(P〈0.01),与水稻抗倒伏能力的强弱有一定的关系。  相似文献   

7.
8.
Lignin is closely related to the lodging resistance of common buckwheat (Fagopyrum esculentum Moench.). However, the characteristics of lignin synthesis related genes have not yet been reported. We investigated the lignin biosynthesis gene expression, activities of related enzymes, and accumulation of lignin monomers during branching stage, bloom stage, and milky ripe stage by real-time quantitative PCR, UVspectrophotometry, and gas chromatography-mass spectrometry in the 2nd internode of three common buckwheat cultivars with different lodging resistance. The results showed that lignin content and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate: CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) were closely related to the lodging resistance of common buckwheat. Further, we studied gene expression of cinnamate 4-hydroxylase (C4H), caffeoyl-CoA O-methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H), cinnamoyl-CoA reductase (CCR), and caffeic acid O-methyltransferase (COMT). The lignin biosynthesis genes were divided into three classes according to their expression pattern: 1) expression firstly increasing and then descending (PAL, 4CL, CAD, C4H, CCoAOMT, F5H, and CCR), 2) expression remaining constant during maturation (C3H), and 3) expression decreasing with maturation (COMT). The present study provides preliminary insights into the expression of lignin biosynthesis genes in common buckwheat, laying a foundation for further understanding the lignin biosynthesis.  相似文献   

9.
一个新的水稻小粒矮秆基因的分子标记定位及效应分析   总被引:6,自引:0,他引:6  
从水稻(Oryza safjva L.)半矮秆品种蜀恢I62中发现一份小粒矮秆突变体“I62d”。对I62d与4个半矮秆品种杂交F1和F2代的遗传分析表明,I62d的矮生性由一对隐性基因控制。以II-32B/162d F2代作定位群体,用分子标记将I62d突变基凶定位丁水稻第3染色体短臂,该基因与微卫星标记RM218和RMI57之间的遗传距离分别为3.5cM和10.0cM。同时,利用近等基因系分析了该基因的表型效应,结果表明它可使株高降为正常高度的1/4左右,籽粒降为正常大小的1/4左右,并使叶片显著缩短、加宽,结实率显著降低。我们认为162d突变基因是一个新的水稻小粒矮秆某因,暂命名为dI62(t)。  相似文献   

10.
Rice is a model organism for studying the mechanism of cell wall biosynthesis and remolding in Gramineae. Mechanical strength is an important agronomy trait of rice (Oryza sativa L.) plants that affects crop lodging and grain yield. As a prominent physical property of cell walls, mechanical strength reflects upon the structure of different wall polymers and how they interact. Studies on the mechanisms that regulate the mechanical strength therefore consequently results in uncovering the genes functioning in cell wall biosynthesis and remodeling. Our group focuses on the study of isolation of brittle culm (bc) mutants and characterization of their corresponding genes. To date, several bc mutants have been reported. The identified genes have covered several pathways of cell wall biosynthesis, revealing many secrets of monocot cell wall biosynthesis. Here, we review the progress achieved in this research field and also highlight the perspectives in expectancy. All of those lend new insights into mechanisms of cell wall formation and are helpful for harnessing the waste rice straws for biofuel production.  相似文献   

11.
水稻茎秆解剖结构与抗倒伏能力关系的研究   总被引:2,自引:0,他引:2  
利用石蜡切片法研究了抗倒伏水稻品种南粳44、武运粳7号与不抗倒伏水稻品系宁7412基部茎秆解剖结构及其与水稻抗倒伏能力的关系.结果表明:抗倒伏水稻品种南粳44和武运粳7号基部节间的维管束数目较多,维管束鞘较厚,细胞层数较多,细胞排列紧密、体积较小;而不抗倒伏水稻品系宁7412基部节间的维管束数目偏少,维管束鞘较薄,细胞层数较少,细胞体积大.从解剖结构还可看出,南粳44和武运粳7号茎秆内的贮藏物质明显多于宁7412.这些茎秆解剖结构的差异可用于区分不同水稻品种(系)的抗倒性强弱,可以作为抗倒伏水稻品种的选育指标和筛选依据,为水稻抗倒伏品种的选育提供了理论依据.  相似文献   

12.
Rice is a model organism for studying the mechanism of cell wall biosynthesis and remolding in Gramineae.Mechanical strength is an important agronomy trait of rice (Oryza sativa L.) plants that affects crop lodging and grain yield.As a prominent physical property of cell walls,mechanical strength reflects upon the structure of different wall polymers and how they interact.Studies on the mechanisms that regulate the mechanical strength therefore consequently results in uncovering the genes functioning in cel...  相似文献   

13.
Secondary growth of stems is an important process for the radial increase of trees. To gain an insight into the molecular mechanisms underlying stem development from primary to secondary growth and to provide information for molecular research and breeding in Betula platyphylla (birch), the gene expression profiles of material from the first, third, and fifth internodes (IN) of 3-month-old seedlings were analyzed. Compared with the first IN, 177 genes were up-regulated and 157 genes down-regulated in the third IN; in the fifth IN, 180 genes were up-regulated and 275 genes were down-regulated. The expressions of 24 genes were up-regulated and 6 genes were down-regulated in the fifth IN relative to the third IN. The differentially expressed genes were annotated as having roles in cambium, xylem, and phloem development and formation; including cell wall expansion, cellulose biosynthesis, lignin biosynthesis and deposition, xylem extension, cell wall modification, and growth hormone responses. The expressions of genes related to cell wall expansion and cellulose biosynthesis in the primary cell wall were down-regulated in the third and fifth IN relative to the first IN. Genes involved in lignin biosynthesis, xylem extension, and cellulose synthesis in the secondary cell wall were up-regulated in the third and fifth IN relative to the first IN. These results described the patterns of gene expression during stem development in birch and provided candidate genes for further functional characterization.  相似文献   

14.
The effect of silicon on lodging of rice in presence of added nitrogen   总被引:7,自引:0,他引:7  
Summary Effect of silicon on lodging of rice induced by added N was studied in the field with three varieties of rice. The resistance to lodging was measured with a special equipment by applying a pulling force to the rice stalk until it broke or bent to about 30° angle with the surface of the soil The added silicon significantly increased the rigidity of rice stalk and this increase was remarkably higher at lower doses of nitrogen. The larger quantities of nitrogen greatly reduced the efficiency of silicon in imparting rigidity to plants. Different varieties responded differently.  相似文献   

15.
16.
以黄淮麦区优良品种矮抗58、周麦18、豫麦49、百农418为研究对象,采用田间试验与实验室分析相结合的方法,对不同小麦品种在不同生育时期的抗倒伏性状进行研究.结果表明: 茎秆机械强度在开花期至花后20 d处于较高水平,在花后30 d明显下降;倒伏指数在开花期最小,花后30 d最大,其余两个时期处于中间水平.相关分析表明,开花期机械强度与重心高度呈显著负相关,与纤维素、木质素含量呈显著正相关,倒伏指数与节长、株高、重心高度呈显著正相关,与纤维素、木质素含量呈显著负相关;花后10 d和花后20 d机械强度与节长、株高、重心高度呈显著负相关,与茎粗、纤维素、半纤维素、木质素含量呈显著正相关,倒伏指数这段时期正好与之相反;花后30 d机械强度与株高、重心高度呈显著负相关,倒伏指数与株高、重心高度呈显著正相关,与木质素含量呈显著负相关.因此,明确各个生育时期与抗倒性相关的茎秆特性,可为黄淮麦区高产抗倒性品种的选育提供依据.  相似文献   

17.
Culm mechanical strength is an important agronomic trait in crop breeding. To understand the molecular mechanisms that control culm mechanical strength, we identified a flexible culm1 (fc1) mutant by screening a rice T-DNA insertion mutant library. This mutant exhibited an abnormal development phenotype, including late heading time, semi-dwarf habit, and flexible culm. In this study, we cloned the FLEXIBLE CULM1 (FC1) gene in rice using a T-DNA tagging approach. FC1 encodes a cinnamyl-alcohol dehydrogenase and is mainly expressed in the sclerenchyma cells of the secondary cell wall and vascular bundle region. In these types of cells, a deficiency of FC1 in the fc1 mutant caused a reduction in cell wall thickness, as well as a decrease in lignin. Extracts from the first internodes and panicles of the fc1 plants exhibited drastically reduced cinnamyl-alcohol dehydrogenase activity. Further histological and biochemical analyses revealed that the p-hydroxyphenyl and guaiacyl monomers in fc1 cell wall were reduced greatly. Our results indicated that FC1 plays an important role in the biosynthesis of lignin and the control of culm strength in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Plant lodging resistance is an important integrative agronomic trait of grain yield and quality in crops. Although extensin proteins are tightly associated with plant cell growth and cell wall construction, little has yet been reported about their impacts on plant lodging resistance. In this study, we isolated a novel extensin‐like (OsEXTL) gene in rice, and selected transgenic rice plants that expressed OsEXTL under driven with two distinct promoters. Despite different OsEXTL expression levels, two‐promoter‐driven OsEXTL‐transgenic plants, compared to a rice cultivar and an empty vector, exhibited significantly reduced cell elongation in stem internodes, leading to relatively shorter plant heights by 7%–10%. Meanwhile, the OsEXTL‐transgenic plants showed remarkably thickened secondary cell walls with higher cellulose levels in the mature plants, resulting in significantly increased detectable mechanical strength (extension and pushing forces) in the mature transgenic plants. Due to reduced plant height and increased plant mechanical strength, the OsEXTL‐transgenic plants were detected with largely enhanced lodging resistances in 3 years field experiments, compared to those of the rice cultivar ZH11. In addition, despite relatively short plant heights, the OsEXTL‐transgenic plants maintain normal grain yields and biomass production, owing to their increased cellulose levels and thickened cell walls. Hence, this study demonstrates a largely improved lodging resistance in the OsEXTL‐transgenic rice plants, and provides insights into novel extensin functions in plant cell growth and development, cell wall network construction and wall structural remodelling.  相似文献   

19.
20.
Plant mechanical strength is an important agronomic trait of rice. An ethyl methane sulfonate (EMS)-induced rice mutant, fragile plant 2 (fp2), showed morphological changes and reduced mechanical strength. Genetic analysis indicated that the brittle of fp2 was controlled by a recessive gene. The fp2 gene was mapped on chromosome 10. Anatomical analyses showed that the fp2 mutation caused the reduction of cell length and cell wall thickness, increasing of cell width, and the alteration of cell wall structure as well as the vessel elements. The consequence was a global alteration in plant morphology. Chemical analyses indicated that the contents of cellulose and lignin decreased, and hemicelluloses and silicon increased in fp2. These results were different from the other mutants reported in rice. Thus, fp2 might affect the deposition and patterning of microflbrils, the biosynthesis and deposition of cell wall components, which influences the formation of primary and secondary cell walls, the thickness of cell walls, cell elongation and expansion, plant morphology and plant strength in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号