首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
JH Dirks  D Taylor 《PloS one》2012,7(8):e43411
During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.  相似文献   

2.
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.  相似文献   

3.
Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves and insect wings,whichenhance the hydrophobicity of the natural surfaces and play a role of self-cleaning.We presented the fabrication technology of asuperhydrophobic surface using high energy ion beam.Artificial insect wings that mimic the morphology and the superhydrophobocityof cicada’s wings were successfully fabricated using argon and oxygen ion beam treatment on a polytetrafluoroethylene(PTFE)film.The wing structures were supported by carbon/epoxy fibers as artificial flexible veins that were bondedthrough an autoclave process.The morphology of the fabricated surface bears a strong resemblance to the wing surface of acicada,with contact angles greater than 160°,which could be sustained for more than two months.  相似文献   

4.
Effects of Dragonfly Wing Structure on the Dynamic Performances   总被引:2,自引:0,他引:2  
The configurations of dragonfly wings, including the corrugations of the chordwise cross-section, the microstructure of the longitudinal veins and membrane, were comprehensively investigated using the Environmental Scanning Electron Microscopy (ESEM). Based on the experimental results reported previously, the multi-scale and multi-dimensional models with different structural features of dragonfly wing were created, and the biological dynamic behaviors of wing models were discussed through the Finite Element Method (FEM). The results demonstrate that the effects of different structural features on dynamic behaviors of dragonfly wing such as natural frequency/modal, bending/torsional deformation, reaction force/torque are very significant. The corrugations of dragonfly wing along the chordwise can observably improve the flapping frequency because of the greater structural stiffness of wings. In updated model, the novel sandwich microstructure of the longitudinal veins remarkably improves the torsional deformation of dragonfly wing while it has a little effect on the flapping frequency and bending deformation. These integrated structural features can adjust the deformation of wing oneself, therefore the flow field around the wings can be controlled adaptively. The fact is that the flights of dragonfly wing with sandwich microstructure of longitudinal veins are more efficient and intelligent.  相似文献   

5.
Primary homologization of wing venation is of crucial importance in taxonomic studies of fossil and recent insects, with implications for large-scale phylogenies. Homologization is usually based on relative relief of veins (with an insect ground plan of alternating concave and convex vein sectors). However, this method has led to divergent interpretations, notably because vein relief can be attenuated in fossil material or because wings were originally flat. In order to interpret better vein relief in fossil insect wings, we tested the application of non-contact laser scanning. This method enables high resolution three-dimensional (3-D) data visualization of a surface, and produces high quality images of fossil insect wings. These images facilitate and improve interpretation of the homologization of wing venation. In addition, because the surface information is digitised in three axes (X, Y, Z), the data may be processed for a wide range of surface characteristics, and may be easily and widely distributed electronically. Finally, this method permits users to reconstruct accurately the fossils and opens the field of biomechanical interpretation using numerical modelling methods.  相似文献   

6.
Although the asymmetry in the upward and downward bending of insect wings is well known, the structural origin of this asymmetry is not yet clearly understood. Some researchers have suggested that based on experimental results, the bending asymmetry of insect wings appears to be a consequence of the camber inherent in the wings. Although an experimental approach can reveal this phenomenon, another method is required to reveal the underlying theory behind the experimental results. The finite element method (FEM) is a powerful tool for evaluating experimental measurements and is useful for studying the bending asymmetry of insect wings. Therefore, in this study, the asymmetric bending of the Allomyrina dichotoma beetle''s hind wing was investigated through FEM analyses rather than through an experimental approach. The results demonstrated that both the stressed stiffening of the membrane and the camber of the wing affect the bending asymmetry of insect wings. In particular, the chordwise camber increased the rigidity of the wing when a load was applied to the ventral side, while the spanwise camber increased the rigidity of the wing when a load was applied to the dorsal side. These results provide an appropriate explanation of the mechanical behavior of cambered insect wings, including the bending asymmetry behavior, and suggest an appropriate approach for analyzing the structural behavior of insect wings.  相似文献   

7.
Abstract Homology of the wing base structure in the Odonata is highly controversial, and many different interpretations of homology have been proposed. In extreme cases, two independent origins of insect wings have been suggested, based on comparative morphology between the odonate and other pterygote wing bases. Difficulties in establishing homology of the wing base structures between Odonata and other Pterygota result mainly from their extreme differences in morphology and function. In the present paper, we establish homology of the wing base structures between Neoptera, Ephemeroptera and Odonata using highly conservative and unambiguously identifiable characters (the basal wing hinge and subcostal veins) as principal landmarks. Homology of the odonate wing base structure with those of Ephemeroptera and Neoptera can be identified reliably. Based on this interpretation, the ancestral condition of the insect wing base structure is discussed.  相似文献   

8.
Insect wings consist almost entirely of lifeless cuticle; yet their veins host a complex multimodal sensory apparatus and other tissues that require a continuous supply of water, nutrients and oxygen. This review provides a survey of the various living components in insect wings, as well as the specific contribution of the circulatory and tracheal systems to provide all essential substances. In most insects, hemolymph circulates through the veinal network in a loop flow caused by the contraction of accessory pulsatile organs in the thorax. In other insects, hemolymph oscillates into and out of the wings due to the complex interaction of several factors, such as heartbeat reversal, intermittent pumping of the accessory pulsatile organs in the thorax, and the elasticity of the wall of a special type of tracheae. A practically unexplored subject is the need for continuous hydration of the wing cuticle to retain its flexibility and toughness, including the associated problem of water loss due to evaporation. Also, widely neglected is the influence of the hemolymph mass and the circulating flow in the veins on the aerodynamic properties of insect wings during flight. Ventilation of the extraordinarily long wing tracheae is probably accomplished by intricate interactions with the circulatory system, and by the exchange of oxygen via cutaneous respiration.  相似文献   

9.
Research data of the microstructure and surface morphology of insect wings have been used to help design micro air vehicles (MAV) and coating materials. The present study aimed to examine the microstructure and morphology of the hind wings of Cyrtotrachelus buqueti using inverted fluorescence microscopy (IFM), scanning electron microscopy (SEM), and a mechanical testing system. IFM was used to investigate the distribution of resilin in the hind wing, and SEM was performed to assess the functional characteristics and cross-sectional microstructure of the wings. Moreover, mechanical properties regarding the intersecting location of folding lines and the bending zone (BZ) were examined. Resilin, a rubber-like protein, was found in several mobile joints and in veins walls that are connected to the wing membranes. Taken together, structural data, unfolding motions, and results of tensile testing suggest two conclusions on resilin in the hind wing of C. buqueti: firstly, the resilin distribution is likely associated with specific folding mechanisms of the hind wings, and secondly, resilin occurs at positions where additional elasticity is needed, such as in the bending zone, in order to prevent structural damage during repeated folding and unfolding of the hind wings. The functional significance of resilin joints may shed light on the evolutionary relationship between morphological and structural hind wing properties.  相似文献   

10.
The aerodynamic characteristics of the Coleopteran beetle species Epilachna quadricollis, a species with flexible hind wings and stiff elytra (fore wings), are investigated in terms of hovering flight. The flapping wing kinematics of the Coleopteran insect are modeled through experimental observations with a digital high-speed camera and curve fitting from an ideal harmonic kinematics model. This model numerically simulates flight by estimating a cross section of the wing as a two-dimensional elliptical plane. There is currently no detailed study on the role of the elytron or how the elytron-hind wing interaction affects aerodynamic performance. In the case of hovering flight, the relatively small vertical or horizontal forces generated by the elytron suggest that the elytron makes no significant contribution to aerodynamic force.  相似文献   

11.
Insect wings are great resources for studying morphological diversities in nature as well as in fossil records. Among them, variation in wing venation is one of the most characteristic features of insect species. Venation is therefore, undeniably a key factor of species-specific functional traits of the wings; however, the mechanism underlying wing vein formation among insects largely remains unexplored. Our knowledge of the genetic basis of wing development is solely restricted to Drosophila melanogaster. A critical step in wing vein development in Drosophila is the activation of the decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signalling pathway during pupal stages. A key mechanism is the directional transport of Dpp from the longitudinal veins into the posterior crossvein by BMP-binding proteins, resulting in redistribution of Dpp that reflects wing vein patterns. Recent works on the sawfly Athalia rosae, of the order Hymenoptera, also suggested that the Dpp transport system is required to specify fore- and hindwing vein patterns. Given that Dpp redistribution via transport is likely to be a key mechanism for establishing wing vein patterns, this raises the interesting possibility that distinct wing vein patterns are generated, based on where Dpp is transported. Experimental evidence in Drosophila suggests that the direction of Dpp transport is regulated by prepatterned positional information. These observations lead to the postulation that Dpp generates diversified insect wing vein patterns through species-specific positional information of its directional transport. Extension of these observations in some winged insects will provide further insights into the mechanisms underlying diversified wing venation among insects.  相似文献   

12.
Although there is mounting evidence that passive mechanical dynamics of insect wings play an integral role in insect flight, our understanding of the structural details underlying insect wing flexibility remains incomplete. Here, we use comparative morphological and mechanical techniques to illuminate the function and diversity of two mechanisms within Odonata wings presumed to affect dynamic wing deformations: flexible resilin vein‐joints and cuticular spikes. Mechanical tests show that joints with more resilin have lower rotational stiffness and deform more in response to a load applied to an intact wing. Morphological studies of 12 species of Odonata reveal that resilin joints and cuticular spikes are widespread taxonomically, yet both traits display a striking degree of morphological and functional diversity that follows taxonomically distinct patterns. Interestingly, damselfly wings (suborder Zygoptera) are mainly characterized by vein‐joints that are double‐sided (containing resilin both dorsally and ventrally), whereas dragonfly wings (suborder Epiprocta) are largely characterized by single‐sided vein‐joints (containing resilin either ventrally or dorsally, but not both). The functional significance and diversity of resilin joints and cuticular spikes could yield insight into the evolutionary relationship between form and function of wings, as well as revealing basic principles of insect wing mechanical design. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
杨海东  白明  李莎  路园园  马德 《昆虫学报》2015,58(12):1322-1330
【目的】昆虫的翅非常精巧与灵活,翅脉及翅关节的形态及功能长久以来受到众多领域科学家的广泛关注。由于历史条件的限制,昆虫翅的研究主要集中在翅脉,即使少量的有关翅关节形态的研究也主要是停留在二维形态数据分析的层面上。更重要的是,各骨片内部形态结构还未见报道。本研究的目的就是为了重建翅关节骨片内部和外部复杂的三维形态结构,全面呈现利用传统形态学方法无法获得的形态学信息,进而深入探究昆虫翅的形态与功能的关系。【方法】本文利用显微CT对鞘翅目4种金龟进行了扫描,通过计算机三维重建技术,对折叠和展开状态时后翅关节各个骨片(第1, 2和3腋片及中片)的内部和外部的三维形态进行研究,展示和分析昆虫翅关节内部与外部形态结构和空间运动的复杂性。【结果】翅关节骨片的三维重建模型及虚拟切面图展示了其复杂的外部形态,主要表现在表面曲率的不均匀变化和部分结构的互相遮挡两个方面。前者主要表现骨片表面具有突起、沟槽、弯折以及外长物等。后者指各骨片均呈现了不同程度的弯折,有的弯折还会互相接触,最终形成筒状结构,这样不可避免造成部分结构被遮挡或包裹。三维重建模型的断层图显示了翅关节骨片并非是实心的结构,而是分为两层:靠近表皮的为高度骨化的外骨骼,而靠近骨片核心则为疏松的类似海绵状结构。本文还展示了各个骨片在后翅折叠状和展开状态下的空间位置,并对所研究的4个科的翅关节骨片的三维形态进行了比较。【结论】翅关节骨片具有复杂的内部和外部形态结构。关节骨片的内部海绵结构和外层强烈骨化的双层结构,可能与其尽量减小骨片的重量和节约运动能量,同时又尽量保持骨片的刚性结构的形态适应策略有关。此类形态适应在材料学、空气动力学等领域具有重要的仿生学意义。  相似文献   

14.
Numerical simulation is a very important method for understanding the behaviors of insect flight. In this study, a method of building a finite element model is proposed on the basis of a real beetle wing, which is 50 mm long in the spanwise direction and 20 mm long in the chordwise direction. We scanned a real beetle wing using a scanner to get the 2D image. The scanned 2D image was used to produce CAD data of the outer lines of the membranes and veins. Then the lines were used to build the finite element model. The model was divided into 48 regions so that the variation in the thickness of the membranes and veins could be taken into account. The effect of the cross section of the veins on the exactness of the finite element model was investigated. The finite element model was used to simulate the bending test of a real beetle wing, and the analysis results are in agreement with the experimental results.  相似文献   

15.
Wings of representative species of the order Diptera were compared with a simple model structure in which corrugated spars diverge from a V-shaped leading edge spar. Both develop torsion and camber when subjected to aerodynamic loads, forming a propeller shape. Both the leading edge and the cubitus of flies' wings twist basally, allowing camber to be set up as the media hinges up or down at the arculus. Three different wing types were identified: stiff wings possessing two or three main spars; and wings capable of ventral flexion. In wings possessing only two spars, found mainly in the Nematocera, control of camber is achieved largely by the use of cross veins. Wing control and flight are generally imprecise. The third spar, found in most Brachycera, in the Syrphidae and in the Conopidae controls camber and helps support a broader wing. Finer control of camber is exerted by marginal cross veins, and these insects generally have precise, darting flight. Ventral flexion mechanisms are found in the Simuliidae, the Stratiomyiidae, and widely in the Schizophora. Control of ventral flexion, which occurs at the end of the downstroke, allows fast, unpredictable manoeuvres. Functional similarities indicate either phylogenetic relationship or convergence.  相似文献   

16.
Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves,which have an effect on thecoloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces.We investigated the micro-scale andnano-scale structures on the wing surfaces of insects and found that the hierarchical multiple roughness structures help in enhancingthe hydrophobicity.After examining 10 orders and 24 species of flying Pterygotan insects,we found that micro-scaleand nano-scale structures typically exist on both the upper and lower wing surfaces of flying insects.The tiny structures such asdenticle or setae on the insect wings enhance the hydrophobicity,thereby enabling the wings to be cleaned more easily.And thehydrophobic insect wings undergo a transition from Cassie to Wenzel states at pitch/size ratio of about 20.In order to examinethe wetting characteristics on a rough surface,a biomimetic surface with micro-scale pillars is fabricated on a silicon wafer,which exhibits the same behavior as the insect wing,with the Cassie-Wenzel transition occurring consistently around apitch/width value of 20.  相似文献   

17.
Representatives of Dermaptera probably have the most unusual hind wing venation and folding pattern among insects. Both correlate with unusual wing folding mechanics, in which folding is achieved from within the wing and unfolding is done by the cerci. In this account, the hind wings of the earwig Forficula auricularia were studied by means of bright field and fluorescence microscopy. Resilin, a rubber-like protein, was revealed in several, clearly defined patches. It occurs dorsally in the radiating veins, but ventrally in the intercalary vein. This distribution determines the folding direction, and resilin is the major driving mechanism for wing folding. Resilin stores elastic energy in broadened vein patches and along the folds. At the other locations, the mid-wing mechanism and central area, the primary function of resilin is suggested to be prevention of material failure. The arrangement of resilin patches is such that the wing cannot be unfolded from the thorax proper but must be unfolded by the cerci. In Dermaptera, the antagonistic movements of folding and unfolding are achieved in two different ways, resilin and cerci. To our knowledge this is unique.  相似文献   

18.
Design and mechanical properties of insect cuticle   总被引:2,自引:0,他引:2  
Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.  相似文献   

19.
The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa?cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm(-1) h(-1). For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm(-1).  相似文献   

20.
The aerodynamic interactions between the body and the wings of a model insect in forward flight and maneuvers are studied using the method of numerically solving the Navier-Stokes equations over moving overset grids. Three cases are considered, including a complete insect, wing pair only and body only. By comparing the results of these cases, the interaction effect between the body and the wing pair can be identified. The changes in the force and moment coefficients of the wing pair due to the presence of the body are less than 4.5% of the mean vertical force coefficient of the model insect; the changes in the aerodynamic force coefficients of the body due to the presence of the wings are less than 5.0% of the mean vertical force coefficient of the model insect. The results of this paper indicate that in studying the aerodynamics and flight dynamics of a flapping insect in forward flight or maneuver, separately computing (or measuring) the aerodynamic forces and moments on the wing pair and on the body could be a good approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号