首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The purpose of the present study was to investigate the influence of muscle fibre composition and stature on fractionated patellar reflex times in ten healthy untrained men (mean age: 23.3 years, SD 3.1; mass: 65.9 kg, SD 8.5; height: 172.3 cm, SD 5.3). Biopsies were taken from the right vastus lateralis muscle. Using staining for myofibrillar adenosine triphosphatase after pre-incubation at pH 4.3 and 4.6, muscle fibres were classified into slow twitch (ST), fast twitch, oxidative-glycolytic (FTa) and fast twitch, glycolytic (FTb) fibres. Total patellar reflex time (TRT) and its fractionated components--reflex latency (LAT) and reflex motor time (MT)--were obtained from the mean of ten trials in each subject whilst performing Jendrassik's maneuvre. The TRT, LAT and MT were 77.7 ms, SD 16.5, 23.4 ms, SD 1.3 and 54.2 ms, SD 16.3, respectively. The LAT was significantly correlated to the percentage number of ST (r = 0.758, P less than 0.05) and FTa fibres (r = -0.657, P less than 0.05), fast twitch:slow twitch ratio (r = -0.799, P less than 0.01) and to the height of the subjects (r = 0.901, P less than 0.001), whereas TRT and MT were not significantly correlated with either fibre types or the height of the subjects. From these results it can be concluded that the LAT during the patellar reflex is influenced by muscle fibre composition and the length of the sensory and/or motor nerve.  相似文献   

2.
Fibre conduction velocity and fibre composition in human vastus lateralis   总被引:6,自引:0,他引:6  
The relationship between muscle fibre composition and fibre conduction velocity was investigated in 19 male track athletes, 12 sprinters and 7 distance runners, aged 20-24 years, using needle biopsy samples from vastus lateralis. Cross sectional areas of the fast twitch (FT) and slow twitch (ST) fibres were determined by histochemical analysis. The percentage of FT fibre areas ranged from 22.6 to 93.6%. Sprinters had a higher percentage of FT fibres than distance runners. Muscle fibre conduction velocity was measured with a surface electrode array placed along the muscle fibres, and calculated from the time delay between 2 myoelectric signals recorded during a maximal voluntary contraction. The conduction velocity ranged from 4.13 to 5.20 m.s-1. A linear correlation between conduction velocity and the relative area of FT fibres was statistically significant (r = 0.84, p less than 0.01). This correlation indicates that muscle fibre composition can be estimated from muscle fibre conduction velocity measured noninvasively with surface electrodes.  相似文献   

3.
The effects were investigated in ten women of intensive heavy resistance strength training lasting for 3 weeks on electromyographic (EMG) activity, muscle cross-sectional area (CSA) and voluntary force production characteristics of leg extensor muscles. Blood samples for the determinations of serum hormones were taken from five of the subjects. Significant increases occurred in the higher force portions of the isometric force-time curve with an increase of 9.7 (SD 8.4)% (P less than 0.01) in maximal peak force. An increase of 15.8 (SD 20.9)% (P less than 0.05) took place also in the maximal neural activation (integrated EMG) of the trained muscles, while an enlargement of 4.6 (SD 7.4)% (P less than 0.05) occurred in the CSA of the quadriceps femoris muscle. Maximal force per muscle CSA increased significantly (P less than 0.05). No statistically significant changes were observed during the training in the mean concentrations of serum testosterone, free testosterone, cortisol and sex hormone binding globulin (SHBG). The individual concentrations of serum testosterone:SHBG ratio correlated with the individual changes obtained during the training in the muscle CSA (r = 0.99; P less than 0.01). The present findings in women indicated that the increases in maximal strength during short-term but intensive strength training were primarily due to the increased voluntary activation of the trained muscles, while muscle hypertrophy remained limited in magnitude. Large interindividual differences in women in serum testosterone concentrations could indicate corresponding differences in muscle hypertrophy and strength development even during a short-term but intensive strength training period.  相似文献   

4.
The purpose of this study was to investigate the effect of strength training (12 weeks, 3 days/week, four lower-body exercises) of young individuals (mean age 23.6 years) on estimates of mitochondrial distribution throughout muscle fibres. A control group (mean age 21. 7 years) was followed simultaneously. Skeletal muscle biopsy samples were obtained from the vastus lateralis, pre- and post-training. The regional distribution of subsarcolemmal and intermyofibrillar mitochondrial populations was determined using quantitative histochemical staining of succinate dehydrogenase (SDH) in type I and II muscle fibres. Strength training resulted in significant increases of 26% and 28% in the cross-sectional area of type I and II fibres, respectively (P < 0.05). Overall SDH activity decreased by 13% with strength training (P < 0.05). The decrease in SDH activity with strength training between fibre types and between subsarcolemmal and intermyofibrillar regions of muscle fibres was not different. Fibre area and SDH activity was unchanged in the control group. We conclude that the muscle hypertrophy associated with strength training results in reduced density of regionally distributed mitochondria, as indicated by the reduction in the activity of SDH.  相似文献   

5.
Samples taken from the middle gluteal muscle of 95 untrained adult horses of different ages and sex were subjected to histochemical analysis using the myosin adenosine triphosphatase (m-ATPase) and nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) staining techniques. Fibres were classified into types I, IIA and IIB according to m-ATPase activity after preincubation at pH 4.4. The percentage of FT (Fast-Twitch Glycolytic) fibres and the proportion of IIB fibres with "high" and "low" oxidative capacity were determined in serial sections stained for NADH-TR. Statistical analysis revealed a significantly higher proportion of IIB fibres than FT fibres (P less than 0.001), though both percentages were correlated. Thus, 72.2 +/- 17.6% of type IIB fibres showed low oxidative capacity, but the remaining 27.8 +/- 17.6% showed high aerobic potential, and thus did not correspond to FT fibres. These results confirm that the contractile capacity of a muscle fibre does not determine its oxidative profile. The different types of muscle fibre should thus be classified solely according to m-ATPase activity, since this characteristic is related to the molecular structure of contractile proteins. Oxidative capacity should be assessed separately, and not be used as a criterion for fibre classification in horses.  相似文献   

6.
The purpose of this study was to determine the effects of intense exercise on the proton transverse (T(2)) relaxation of human skeletal muscle. The flexor digitorium profundus muscles of 12 male subjects were studied by using magnetic resonance imaging (MRI; 6 echoes, 18-ms echo time) and in vivo magnetic resonance relaxometry (1,000 echoes, 1.2-ms echo time), before and after an intense handgrip exercise. MRI of resting muscle produced a single T(2) value of 32 ms that increased by 19% (P < 0.05) with exercise. In vivo relaxometry showed at least three T(2) components (>5 ms) for all subjects with mean values of 21, 40, and 137 ms and respective magnitudes of 34, 49, and 14% of the total magnetic resonance signal. These component magnitudes changed with exercise by -44% (P < 0.05), +52% (P < 0.05), and +23% (P < 0.05), respectively. These results demonstrate that intense exercise has a profound effect on the multicomponent T(2) relaxation of muscle. Changes in the magnitudes of all the T(2) components synergistically increase MRI T(2), but changes in the two shortest T(2) components predominate.  相似文献   

7.
Effect of low chloride on relaxation in hamster diaphragm muscle   总被引:1,自引:0,他引:1  
With muscle fatigue the chloride (Cl-) conductance of the sarcolemmal membrane decreases. The role of lowered Cl- conductance in the prolongation of relaxation seen with fatigue was studied in isolated hamster diaphragm strips. The muscles were studied in either a Krebs solution or a low Cl- solution in which half of the NaCl was replaced by Na-gluconate. Short tetanic contractions were produced by a 160-ms train of 0.2-ms pulses at 60 Hz from which tension (T) and the time constant of relaxation were measured. Resting membrane potential (Em) was measured using KCl-filled microelectrodes with resistances of 15-20 M omega. Mild fatigue (20% fall in tension) was induced by 24-25 tetanic contractions at the rate of 2/s. There was no difference in Em or T in the two solutions, either initially or with fatigue. The time constant of relaxation was greater in low Cl- solution, both initially (22 +/- 3 vs. 18 +/- 5 ms, mean +/- SD, P less than 0.05) and with fatigue (51 +/- 18 vs. 26 +/- 7 ms, P less than 0.005). Lowering of sarcolemmal membrane Cl- conductance appears to play a role in the slowing of relaxation of hamster diaphragm muscle seen with fatigue.  相似文献   

8.
Twelve male Sprague-Dawley rats (21 days old) were randomly assigned into two experimental groups: sea level control (CONT) and hypobaric hypoxia (HYPO). The HYPO rats were kept in an hypobaric chamber maintaining a simulated altitude of 4000 m (61.1 kPa). After 10 weeks of treatment, the rat hindlimb muscles [soleus (SOL) and extensor digitorum longus (EDL)] were subjected to histochemical and electro-mechanical analyses. Results indicated that compared to CONT the HYPO SOL muscle had a significantly greater relative distribution of fast-twitch-oxidative-glycolytic (FOG) fibres (28.9% SEM 2.0 vs 18.3% SEM 1.8, P less than 0.01) with a significant decrease in slow twitch oxidative fibre distribution (69.5% SEM 2.4 vs 82.9% SEM 3.1, P less than 0.01). Compared to CONT the HYPO EDL muscle also manifested a significant increase in FOG fibre distribution (51.6% SEM 0.8 vs 46.6% SEM 1.1, P less than 0.01), but this was accompanied by a significant decrease in fast twitch glucolytic fibres (44.3% SEM 0.9 vs 49.2% SEM 1.7, P less than 0.05). These histochemical fibre type transformations accompanied significant and expected changes in the electro-mechanical parameters tested in situ, e.g. maximal twitch force, maximal rate of force development, contraction time, half relaxation time, force: frequency curve, and fatigability. It was concluded that chronic hypobaric hypoxia could have a potent influence upon the phenotype expression of muscle fibres.  相似文献   

9.
The aim of this study was to determine the effects of 8 weeks of resistance training (RT) on the myoglobin concentration ([Mb]) in human skeletal muscle, and to compare the change in the [Mb] in two different RT protocols. The two types of protocol used were interval RT (IRT) of moderate to low intensity with a high number of repetitions and a short recovery time, and repetition RT (RRT) of high intensity with a low number of repetitions and a long recovery time. A group of 11 healthy male adults voluntarily participated in this study and were divided into IRT (n = 6) and RRT (n = 5) groups. Both training protocols were carried out twice a week for 8 weeks. At the completion of the training period, the one-repetition maximal force values and isometric force were increased significantly in all the subjects, by about 38.8% and 26.0%, respectively (P < 0.01). The muscle fibre composition was unchanged by the 8 weeks of training. The muscle fibre cross-sectional areas were increased significantly by both types of training in all fibre types (I, IIa and IIb, mean + 16.1 %, P < 0.05). The [Mb] showed no significant changes at the completion of the training [IRT from 4.63 (SD 0.63) to 4.48 (SD 0.72), RRT from 4.47 (SD 0.75) to 4.24 (SD 0.80) mg x g(-1) wet tissue] despite a significant decrease in citrate synthase activity [IRT from 5.27 (SD 1.45) to 4.49 (SD 1.48), RRT from 5.33 (SD 2.09) to 4.85 (SD 1.87) micromol x min(-1) x g(-1) wet tissue; P < 0.05] observed after both protocols. These results suggested that myoglobin and mitochondria enzymes were regulated by different mechanisms in response to either type of RT. Moreover, the maintained [Mb] in hypertrophied muscle should preserve oxygen transport from capillaries to mitochondria even when diffusion distance is increased.  相似文献   

10.
Intrafusal fibres from the rat soleus were investigated for representative histochemical profiles in sedentary animals and animals chronically exercised for 17 weeks on a treadmill. The pattern of myosin adenosine triphosphatase (ATPase) activity in the polar region revealed three intrafusal fibre types: (1) myosin ATPase-dark (MD) fibres, alkali- and acid-stabile; (2) myosin ATPase-light (ML) fibres, alkali- and acid-labile; and (3) myosin ATPase-reversible (MR) fibres, alkali-stabile and acid-labile. The three fibre types were correlated with the level of reduced NADH diaphorase activity, with MR, ML and MD fibres staining dark, moderate and light, respectively. In the equatorial region the morphological features of representative ML and MD fibres revealed that they were nuclear bag fibres, while representative MR fibres were identified as nuclear chain fibres. The MR fibres in the exercised animals had higher levels of myosin ATPase alkaline stability and acid lability than MR fibres in the sedentary animals, suggesting the MR fibre profiles are selectively influenced by chronic exercise. The mean cross-sectional area of MR fibres from the exercised animals was significantly less than the MR fibres from the sedentary animals. In contrast to the effect of endurance training on NADH diaphorase activity in extrafusal muscle fibres, there was evidence of less activity in the MD fibres of the exercised animals.  相似文献   

11.
The effects of a 1 year training period on 13 elite weight-lifters were investigated by periodical tests of electromyographic, muscle fibre and force production characteristics. A statistically non-significant increase of 3.5% in maximal isometric strength of the leg extensors, from 4841 +/- 1104 to 5010 +/- 1012 N, occurred over the year. Individual changes in the high force portions of the force-velocity curve correlated (p less than 0.05-0.01) with changes in weight-lifting performance. Training months 5-8 were characterized by the lowest average training intensity (77.1 +/- 2.0%), and this resulted in a significant (p less than 0.05) decrease in maximal neural activation (IEMG) of the muscles, while the last four month period, with only a slightly higher average training intensity (79.1 +/- 3.0%), led to a significant (p less than 0.01) increase in maximum IEMG. Individual increases in training intensity between these two training periods correlated with individual increases both in muscular strength (p less than 0.05) and in the weight lifted in the clean & jerk (p less than 0.05). A non-significant increase of 3.9% in total mean muscle fibre area occurred over the year. The present findings demonstrate the limited potential for strength development in elite strength athletes, and suggest that the magnitudes and time courses of neural and hypertrophic adaptations in the neuromuscular system during their training may differ from those reported for previously untrained subjects. The findings additionally indicate the importance of training intensity for modifying training responses in elite strength athletes.  相似文献   

12.
Various aspects of neuromuscular, anaerobic, and aerobic performance capacity were investigated in four powerlifters, seven bodybuilders, and three wrestlers with a history of specific training for several years. The data (means +/- SD) showed that the three subject groups possessed similar values for maximal isometric force per unit bodyweight (50.7 +/- 9.6, 49.3 +/- 4.1, and 49.3 +/- 10.9 N/kg, respectively). However, significant (P less than 0.05) differences were observed in the times for isometric force production, so that e.g., times to produce a 30% force level were shorter for the wrestlers and bodybuilders (28.3 +/- 3.1 and 26.4 +/- 6.6 ms) than that (53.3 +/- 23.7 ms) for the powerlifters. Utilization of elastic energy by the wrestlers was significantly (P less than 0.05) better than that of the other two subject groups, as judged from differences between the counter-movement and squat jumps at 0, 40, and 100 kg's loads. No differences were observed between the groups in anaerobic power in a 1-min maximal test, but the values for VO2 max were higher (P less than 0.05) among the wrestlers and bodybuilders (57.8 +/- 6.6 and 50.8 +/- 6.8 ml X kg-1 X min-1) as compared to the powerlifters (41.9 +/- 7.2 ml X kg-1 X min-1). Within the limitations of the subject sample, no differences of a statistical significancy were observed between the groups in fibre distribution, fibre areas, or the area ratio of fast (FT) and slow (ST) twitch fibres in vastus lateralis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Twenty young men trained the right knee extensors and flexors on an isokinetic dynamometer three times weekly over a 10-week period. During each session, 10 men in the slow training group completed three sets of 8 maximal contractions at a rate of 1.05 rad s-1, whereas the other 10, the fast group, completed three sets of 20 contractions at a rate of 4.19 rad s-1. Subjects wer pre- and post-tested for peak torque and power on an isokinetic dynamometer at 1.05, 3.14, and 4.19 rad s-1. Proportions of muscle fibre-types and fibre cross-sectional areas were determined from biopsy specimens taken before and after training from the right vastus lateralis. When testing was conducted at 1.05 rad s-1, the slow group improved (P less than 0.05) peak torque by 24.5 N m (8.5%), but no change was noted for the fast group. Power increased (P less than 0.05) by 32.7 W (13.6%) in the slow group and 5.5 W (2.5%) in the fast. At 3.14 rad s-1, both groups increased (P less than 0.05) peak torque and power. At 4.19 rad s-1, the fast group increased (P less than 0.05) peak torque by 30.0 N m (19.7%), whereas no training effect was observed in the slow group. There was no significant change in power in either group at 4.19 rad s-1. No significant changes were observed over the 10-week training period in percentages of type I, IIa and IIb fibres, but both groups showed significant increases (P less than 0.05) in type I and IIa fibre areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Six healthy men performed sustained static handgrip exercise for 2 min at 40% maximal voluntary contraction followed by a 6-min recovery period. Heart rate (fc), arterial blood pressures, and forearm blood flow were measured during rest, exercise, and recovery. Potassium ([K+]) and lactate concentrations in blood from a deep forearm vein were analysed at rest and during recovery. Mean arterial pressure (MAP) and fc declined immediately after exercise and had returned to control levels about 2 min into recovery. The time course of the changes in MAP observed during recovery closely paralleled the changes in [K+] (r = 0.800, P < 0.01), whereas the lactate concentration remained elevated throughout the recovery period. The close relationship between MAP and [K+] was also confirmed by experiments in which a 3-min arterial occlusion period was applied during recovery to the exercised arm by an upper arm cuff. The arterial occlusion affected MAP while fc recovered at almost the same rate as in the control experiment. Muscle biopsies were taken from the brachioradialis muscle and analysed for fibre composition and capillary supply. The MAP at the end of static contraction and the [K+] appearing in the effluent blood immediately after contraction were positively correlated to the relative content of fast twitch (% FT) fibres (r = 0.886 for MAP vs % FT fibres, P < 0.05 and r = 0.878 for [K+] vs % FT fibres, P < 0.05). Capillary to fibre ratio showed an inverse correlation to % FT fibres (r = -0.979, P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Contractile properties of old rat muscles: effect of increased use   总被引:1,自引:0,他引:1  
To examine how different kinds of activity affect the composition and contractile properties of aging skeletal muscle, old male rats were strength and swim trained. The mass of weights lifted during the strength training increased by 85 +/- 9% (P less than 0.05), which was accompanied by an increase by 32 +/- 5% (P less than 0.05) of the estimated force developed. The wet muscle weight of the soleus and the plantaris decreased significantly with age. The phenomenon was counteracted but not neutralized by the strength training. Twitch and tetanic tension also decreased significantly with age in both the soleus and plantaris muscle. This was avoided by the strength training. This training also significantly decreased time to peak tension and half-relaxation time of both muscles. The swim training increased the heart-to-body weight ratio by 21 +/- 5% (P less than 0.05) and the endurance of the soleus muscle. Time to peak tension and triosephosphate dehydrogenase activity of the plantaris muscle were strongly correlated (P less than 0.001) with myosin adenosinetriphosphatase activity. The results show that the composition and contractile properties of old skeletal muscle are considerably affected by strength training repeated during a substantial period of old age, whereas swim training only affects the endurance of the skeletal muscle.  相似文献   

16.
The effect of dynamic exercise on the NADH content of human type I (slow-twitch) and II (fast-twitch) muscle fibres was investigated. Muscle biopsy samples were obtained from the quadriceps femoris of seven healthy subjects at rest and after bicycle exercise at 40, 75 and 100% of the maximal oxygen uptake [VO2(max.)]. At rest and after exercise at 100% VO2(max.), muscle NADH content was significantly higher (P less than 0.05) in type I than in type II fibres. After exercise at 40% VO2(max.), muscle NADH decreased in type I fibres (P less than 0.01), but was not significantly changed in type II fibres. After exercise at 75 and 100% VO2(max.), muscle NADH increased above the value at rest in both type I and II fibres (P less than 0.05). Muscle lactate was unchanged at 40% VO2(max.), but increased 20- and 60-fold after exercise at 75 and 100% VO2(max.) respectively. The finding that NADH decreased only in type I fibres at 40% VO2(max.) supports the idea that type I is the fibre type predominantly recruited during low-intensity exercise. The increase of NADH in both fibre types after exercise at 75% and 100% VO2(max.) suggests that the availability of oxygen relative to the demand is decreased in both fibre types at high exercise intensities.  相似文献   

17.
This work compares the specific effects of 3 mo of moderate, isometric, or dynamic voluntary exercises on the contractile properties of human adductor pollicis muscle. Isometric training consisted of 10 daily contractions of 5-s duration at the frequency of one contraction per minute. Dynamic training consisted of 10 daily series of 10 fast contractions (less than 0.5-s duration) moving a load of one-third of the maximal muscle strength at a frequency of one series per minute. Both training programs produced a concomitant increase in maximal tetanic tension and in peak rate of tension development (Ro). A larger increase (P less than 0.05) was found after isometric training (20 vs. 11% after dynamic exercises), whereas Ro augmented more (P less than 0.05) after dynamic contractions (31 vs. 18% after isometric training). Enhancements of twitch force (Pt), rates of twitch tension development (Rt), and of relaxation (St) were, respectively, 20, 20, and 12% after isometric training. There was no modification of contraction time and time of half relaxation (T 1/2R). Conversely, dynamic training produced increases of Rt (25%) and St (16%), associated with an apparently paradoxical decrease of Pt (10%) and reductions of contraction time (11%) and T 1/2R (9%). Maximal shortening velocity was only increased after dynamic training (21%), whereas the maximal muscle power presented a large increase (P less than 0.05) after isometric exercises (51 vs. 19% after dynamic exercises) and a shift of its optimal peak toward heavier loads. This study suggests that human muscle adapts differently to isometric or to dynamic training programs and provides evidence that its contractile kinetics can be altered by exercises performed in physiological conditions.  相似文献   

18.
Cellular adaptation of the trapezius muscle in strength-trained athletes   总被引:16,自引:4,他引:12  
 The aim of this study was to elucidate the cellular events that occur in the trapezius muscle following several years of strength training. In muscle biopsies from ten elite power lifters (PL) and six control subjects (C), several parameters were studied: cross-sectional area of muscle fibres, myosin heavy chain composition (MHC) and capillary supply [capillaries around fibres (CAF) and CAF/fibre area]. A method was also developed for counting the number of myonuclei and satellite cell nuclei. The proportion of fibres expressing MHC IIA, the cross-sectional area of each fibre type and the number of myonuclei, satellite cells and fibres expressing markers for early myogenesis were significantly higher in PL than in C (P<0.05). A significant correlation between the myonuclear number and the cross-sectional area was observed. Since myonuclei in mature muscle fibres are not able to divide, we suggest that the incorporation of satellite cell nuclei into muscle fibres resulted in the maintenance of a constant nuclear to cytoplasmic ratio. The presence of small diameter fibres expressing markers for early myogenesis indicates the formation of new muscle fibres. Accepted: 17 November 1998  相似文献   

19.
The influence of variations in muscle fibre composition on isometric endurance capacity was measured in 23 young healthy untrained male volunteers. After determination of the maximum voluntary force of contraction (MVC), subjects sustained to fatigue contractions at forces of 80%, 50% and 20% of MVC with a 5-min rest between each. A needle biopsy was obtained from m. vastus lateralis and used for histochemical determination of fibre composition based on myosin ATP-ase activity, and fibre are a based on succinate dehydrogenase (SDH) activity. Endurance times were 21 +/- 9 s (mean +/- SD) at 80% of MVC, 56 +/- 17 s at 50% of MVC and 203 +/- 89 s at 20% of MVC. A wide range of muscle fibre compositions was observed with Type I fibres accounting for 48.0 +/- 10.5% of the total, corresponding to 45.0 +/- 11.5% of the total muscle area. Muscle fibre composition, whether expressed as the proportions of the different fibre types present, or as the fraction of total muscle cross-sectional area occupied by each fibre type was not correlated with isometric endurance capacity at any of the three forces studied. Endurance time was also unrelated to MVC. In contrast to the results of previous studies where trained subjects were used, or where different muscle groups were compared, these results suggest that isometric endurance is not influenced by muscle fibre composition.  相似文献   

20.
Cross-sections (thickness 10 microns) of whole autopsied left and right anterior tibialis muscles of seven young previously healthy right-handed men (mean age 23 years, range 18-32 years) were prepared for light-microscope enzyme histochemistry. Muscle cross-sectional area and total number of fibres, mean fibre size (indirectly determined) and proportion of the different fibre types (type 1 and type 2 on basis of myofibrillar adenosine triphosphatase characteristics), in each muscle cross-section were determined. The analysis showed that the cross-sectional area of the left muscle was significantly larger (P less than 0.05), and the total number of fibres was significantly higher (P less than 0.05), than for the corresponding right muscle. There was no significant difference for the mean fibre size or the proportion of the two fibre types. The results imply that long-term asymmetrical low-level daily demands on muscles of the left and the right lower leg in right-handed individuals provide enough stimuli to induce an enlargement of the muscles on the left side, and that this enlargement is due to an increase in the number of muscle fibres (fibre hyperplasia). Calculations based on the data also explain why the underlying process of hyperplasia is difficult, or even impossible, to detect in standard muscle biopsies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号