首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel spray reactors are described that employ immobilized biocatalyst (carbonic anhydrase), enabling concentration and solubilization of emitted CO(2) by allowing catalytic contact with water spray. The reactors were fed with simulated emission gas. The performance of the reactors was investigated with respect to operation variable: emission flow rate; gas composition in the emission stream; water flow rate; area-to-volume ratio of immobilized reactor core; and the enzyme load within the core. The reactors were also investigated for pressure drop and extractability of CO(2) from the emission with single vs. multiple reactors (of combined equal volume). The biotechnological process of solubilization and concentration of CO(2) from emission exhausts or streams occurring in the spray reactors could be coupled for further biochemical/chemical conversion of the concentrated CO(2).  相似文献   

2.
Ex situ treatment of simulated pyrene-contaminated soil was studied in bio-slurry phase reactors operated in periodic discontinuous batch mode under anoxic–aerobic–anoxic–anoxic microenvironment. Experiments were performed in six different bio-slurry phase reactors (retention time of 120 h; soil loading rate of 20 kg soil/m3-day; operating temperature at 28±2 °C) by varying substrate concentration (substrate loading rate (SLR), 0.12, 0.24 and 0.36 g pyrene/kg soil-day) and bioaugmentation application (domestic sewage inoculum; CFU—2×106). The performance of slurry phase reactors was found to be dependent on the applied SLR and application of bioaugmentation (domestic sewage as augmented inoculum). Control reactor (killed control) showed only 6% of pyrene degradation while the non-augmented reactor showed an efficiency of 34% (substrate degradation rate (SDR)—0.0165 g pyrene/kg soil-day). In the case of augmented reactors, the system operated with low SLR showed a pyrene degradation efficiency of almost 90% (SDR—0.04 g pyrene/kg soil-day) and the reactor with high SLR showed 50% (SDR—0.025 g pyrene/kg soil-day) of pyrene degradation indicating the dependence of performance on the substrate concentration. Colony forming units (CFUs) variation was in good agreement with the performance of the reactors with respect to pyrene degradation. On the whole, pyrene degradation rate was greater in the augmented reactors compared to non-augmented reactors.  相似文献   

3.
《Process Biochemistry》2007,42(11):1498-1505
Batch reactors and microcosms were used to evaluate groundwater bioremediation potential of tetrachloroethene (PCE) in the presence of additional pollutants present at a site located in the Apulia Region (SE Italy). Reductive dechlorination of PCE was studied under anaerobic conditions by comparing the effectiveness of three inocula: (a) soil sampled at the contaminated site, (b) anaerobic sludge from a municipal wastewater plant, and (c) an enriched dehalogenating culture containing Dehalococcoides species. In order to enhance dehalogenation, reactors inoculated with sludge were also amended with selected electron donors. Aerobic reactors were also established to study oxidative degradation of vinyl chloride (VC), that may accumulate after incomplete dechlorination of PCE.Results showed that consortia derived from anaerobic sludge and amended with electron donors quantitatively and incompletely degraded PCE to cis-dichloroethylene, whereas in reactors augmented with a dehalogenating culture complete dechlorination of PCE occurred even in the presence of additional toxic contaminants. The presence of Dehalococcoides spp. in the dehalogenating culture and its absence in reactors inoculated with anaerobic sludge was confirmed using FISH community analyses. In all cases, prolonged incubation periods were necessary for dechlorination. On the other hand, oxidative degradation of VC in aerobic reactors occurred after short lag times.  相似文献   

4.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of thereactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

5.
Studies have been carried out to correlate biogas-induced mixing and granulation in upflow anaerobic sludge blanket (UASB) reactors, treating low-strength as well as high-strength biodegradable wastewaters. A dimensionless granulation index (GI) has been framed taking into account the mixing in sludge bed due to produced biogas. Analysis of full-scale, pilot-scale and lab-scale UASB reactors treating actual wastewaters reveals the significance of biogas-induced mixing, represented by GI, on granulation of biomass in the reactors. For obtaining proper granulation in UASB reactors (percentage granules greater than 50%, w/w), resulting in higher chemical oxygen demand (COD) removal efficiency, it is recommended to maintain GI values in the range of 15,000–57,000.  相似文献   

6.
A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.  相似文献   

7.
Bioelectrochemical reactors (BERs) with a cathodic working potential of −0.6 or −0.8 V more efficiently degraded cellulosic material, i.e., filter paper (57.4–74.1% in 3 days and 95.9–96.3% in 7 days) than did control reactors without giving exogenous potential (15.4% in 3 days and 64.2% in 7 days). At the same time, resultant conversions to methane and carbon dioxide in cathodic working chamber of BERs by application of electrochemical reduction in 3 days of operation were larger than control reactors. However, cumulative methane production in cathodic BERs was similar to those in control reactors after 7 days of operation. Microscopic observation and 16S rRNA gene analysis showed that microbial growth in the entire consortium was higher after 2 days of operation of cathodic BERs as compared with the control reactors. In addition, the number of methanogenic 16S rRNA gene copies in cathodic BERs was higher than in control reactors. Moreover, archaeal community structures constructed in cathodic BERs consisted of hydrogenotrophic methanogen-related organisms and differed from those in control reactors after 2 days of operation. Specifically, the amount of Methanothermobacter species in cathodic BERs was higher within archaeal communities than in those control reactors after 2 days of operation. Electrochemical reduction may be effective for accelerating microbial growth in the start-up period and thereby increasing microbial treatment of cellulosic waste and methane production.  相似文献   

8.
Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes was used to investigate the reproducibility and stability in the bacterial community structure of laboratory-scale sequencing batch bioreactors (SBR) and to assess the impact of solids retention time (SRT) on bacterial diversity. Two experiments were performed. In each experiment two sets of replicate SBRs were operated for a periods of three times the SRT. One set was operated at an SRT of 2 days and another set was operated at an SRT of 8 days. Samples for T-RFLP analysis were collected from the two sets of replicate reactors. HhaI, MspI, and RsaI T-RFLP profiles were analyzed using cluster analysis and diversity statistics. Cluster analysis with Ward's method using Jaccard distance and Hellinger distance showed that the bacterial community structure in both sets of reactors from both experimental runs was dynamic and that replicate reactors were clustered together and evolved similarly from startup. Richness (S), evenness (E), the Shannon-Weaver index (H), and the reciprocal of Simpson's index (1/D) were calculated, and the values were compared between the two sets of reactors. Evenness values were higher for reactors operated at an SRT of 2 days. Statistically significant differences in diversity (H and D) between the two sets of reactors were tested using a randomization procedure, and the results showed that reactors from both experimental runs that were operated at an SRT of 2 days had higher diversity (H and D) at the 5% level. T-RFLP analysis with diversity indices proved to be a powerful tool to analyze changes in the bacterial community diversity in response to changes in the operational parameters of activated-sludge systems.  相似文献   

9.
In this study molecular microbiological and multivariate statistical analyses were carried out to determine the structure and dynamics of bacterial communities through a biofilm based, pilot-scale wastewater treatment cascade system comprised of eight reactors. Results indicated a vertical as well as horizontal differentiation of biofilm bacterial communities within individual reactors and through the reactor series, respectively. The richness of biofilm samples taken from dissolved oxygen rich sections of reactors were relatively lower than of samples taken from less oxygenized sections (one-way ANOVA P = 0.07). The Euclidean distance based one-way ANOSIM pointed out that in bacteriological point of view: (1) no statistically significant difference could be observed among the first five reactors (P ≥ 0.1); (2) the first seven reactors differed significantly from the last reactor, (P ≤ 0.03); (3) reactors 1 and 2 differed significantly from reactors 6 and 7 (P ≈ 0.02) and (4) reactor 3 from reactor 7 (P ≈ 0.03). 16S rRNA gene cloning revealed that through the cascade system the initially dominant heterotrophic bacteria (Acinetobacter, Acidovorax, Parabacteroides, Thauera, Desulfobacterium and Desulfomicrobium) were gradually replaced or supplemented by autotrophic nitrifying bacteria (Nitrosomonas, ‘Candidatus Nitrotoga’ and Nitrospira). Our results indicate that the vertical alteration of bacterial community structure within a particular reactor was driven by the alteration of dissolved oxygen concentration, while the horizontal alteration of bacterial community structure through the cascade system was driven mainly by the gradually decreasing dissolved organic matter content and increasing dissolved oxygen concentration.  相似文献   

10.
The use of anaerobic processes to treat low-strength wastewater has been increasing in recent years due to their favourable performance-costs balance. For optimal results, it is necessary to identify reactor configurations that are best suited for this kind of application. This paper reports on the comparative study carried out with two high-rate anaerobic reactor systems with the objective of evaluating their performances when used for the treatment of low-strength, complex wastewater. One of the systems is the commonly used up-flow anaerobic sludge blanket (UASB) reactor. The other is the up-flow staged sludge bed (USSB) system in which the reactor was divided longitudinally into 3, 5 and 7 compartments by the use of baffles. The reactors (9 l) were fed with a synthetic, soluble and colloidal waste (chemical oxygen demand (COD) < 1000 mg/l) and operated at 28°C and 24 h hydraulic retention time. Intermediate flow hydraulics, between plug-flow and completely-mixed, in the UASB and 7 stages USSB reactors allowed efficient degradation of substrates with minimum effluent concentrations. Low number of compartments in the USSB reactors increased the levels of short-circuiting thus reducing substrate removal efficiencies. All reactors showed high COD removal efficiencies (93–98%) and thus can be regarded as suitable for the treatment of low strength, complex wastewater. Staged anaerobic reactors can be a good alternative for this kind of application provided they are fitted with a large enough (≥7) number of compartments to fully take advantage of their strengths. Scale factors seem to have influenced importantly on the comparison between one and multi staged sludge-bed reactors and, therefore, observations made here could change at larger reactor volumes.  相似文献   

11.
Incandescent lamp illumination enhanced methane production from a thermophilic anaerobic digestion reactor (55°C) supplied with glucose. After 10 days of operation, the volume of methane produced from light reactors was approximately 2.5 times higher than that from dark reactors. A comparison of the carbon balance between light and dark conditions showed that methane produced from hydrogen and carbon dioxide in the light reactors was higher than that from the dark reactors. When hydrogen or acetate was fed into the reactors, methane production with added hydrogen was faster and higher under light conditions than under dark conditions. The use of blue light-emitting diodes also enhanced methane production over that under dark conditions. The 16S rRNA gene copy numbers for Methanothermobacter spp. in the light reactor and in the dark reactor were at the same level. The copy number for Methanosarcina spp. in the light reactors was approximately double than that in the dark reactors. These results suggest that blue light enhances the methanogenic activity of hydrogenotrophic methanogens.  相似文献   

12.
Solutions of sodium caprate and sodium laurate were digested in upflow anaerobic sludge bed (UASB) reactors inoculated with granular sludge and in expanded granular sludge bed (EGSB) reactors. UASB reactors are unsuitable if lipids contribute 50% or more to the COD of waste water: the gas production rate required to obtain sufficient mixing and contact cannot be achieved. At lipid loading rates exceeding 2–3 kg COD m−3 day−1, total sludge wash-out occurred. At lower loading rates the system was unreliable, due to unpredictable sludge flotation. EGSB reactors do fulfil the requirements of mixing and contact. They accommodate space loading rates up to 30 kg COD m−3 day−1 during digestion of caprate or laurate as sole substrate, at COD removal efficiencies of 83–91%, and can be operated at hydraulic residence times of 2 h without any problems. Augmentation of granular sludge in lab-scale EGSB reactors was demonstrated. The new granules had excellent settling properties. Floating layer formation, as well as mixing characteristics in full-scale EGSB reactors require further research.  相似文献   

13.
The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH4 potentials of solid wastes during 27 months of landfilling operation in two pilot scale landfill reactors. The initial methane potential of solid wastes filled to the reactors was around 0.347 L/CH4/g dry waste, which decreased with operational time of landfill reactors to values of 0.117 and 0.154 L/CH4/g dry waste for leachate recirculated (R1) and non-recirculated (R2) reactors, respectively. Results indicated that the average rate constant increased by 32% with leachate recirculation. Also, the performance of the system was modeled using the BMP data for the samples taken from reactors at varying operational times by MATLAB program. The first-order rate constants for R1 and R2 reactors were 0.01571 and 0.01195 1/d, respectively. The correlation between the model and the experimental parameters was more than 95%, showing the good fit of the model.  相似文献   

14.
The anaerobic degradation of terephthalate as sole substrate was studied in three anaerobic upflow reactors. Initially, the reactors were operated as upflow anaerobic sludge bed (UASB) reactors and seeded with suspended methanogenic biomass obtained from a full-scale down-flow fixed film reactor, treating wastewater generated during production of purified terephthalic acid. The reactors were operated at 30, 37, and 55 degrees C. The terephthalate removal capacities remained low in all three reactors (<4 mmolxL-1xday-1, or 1 g of chemical oxygen demand (COD)xL-1xday-1) due to limitations in biomass retention. Batch experiments with biomass from the UASB reactors revealed that, within the mesophilic temperature range, optimal terephthalate degradation is obtained at 37 degrees C. No thermophilic terephthalate-degrading culture could be obtained in either continuous or batch cultures. To enhance biomass retention, the reactors were modified to anaerobic hybrid reactors by introduction of two types of reticulated polyurethane (PUR) foam particles. The hybrid reactors were operated at 37 degrees C and seeded with a mixture of biomass from the UASB reactors operated at 30 and 37 degrees C. After a lag period of approximately 80 days, the terephthalate conversion capacity of the hybrid reactors increased exponentially at a specific rate of approximately 0.06 day-1, and high removal rates were obtained (40-70 mmolxL-1xday-1, or 10-17 g of CODxL-1xday-1) at hydraulic retention times between 5 and 8 h. These high removal capacities could be attributed to enhanced biomass retention by the development of biofilms on the PUR carrier material as well as the formation of granular biomass. Biomass balances over the hybrid reactors suggested that either bacterial decay or selective wash-out of the terephthalate fermenting biomass played an important role in the capacity limitations of the systems. The presented results suggest that terephthalate can be degraded at high volumetric rates if sufficiently long sludge ages can be maintained, and the reactor pH and temperature are close to their optima.  相似文献   

15.
The aim of this study was to evaluate the impact of zeolite powders on feasibility of rapid aerobic granulation in the column-type sequencing batch reactors. After 90 days' operation, aerobic granular sludge was formed in both reactors by altering influent chemical oxygen demand/nitrogen (COD/N) ratios. R1 with zeolite powders had better removal capabilities of COD and total nitrogen than R2, which was without zeolite powders. Mixed liquor volatile suspended solid concentrations of the two reactors were 7.36 and 5.45 g/L, while sludge volume index (SVI30) values were 34.9 and 47.9 mg/L, respectively. The mean diameters of aerobic granular sludge in the above two reactors were 2.5 and 1.5 mm, respectively. Both reactors achieved the largest simultaneous nitrification and denitrification (SND) efficiency at an influent COD/N ratio of 8; however, R1 exhibited more excellent SND efficiency than R2. The obtained results could provide a novel technique for rapid aerobic granulation and N removal simultaneously, especially when treating nitrogen-rich industrial wastewater.  相似文献   

16.
Three different earthworm species Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus in individual (Monocultures) and combinations (Polycultures) were utilized to compare the suitability of worm species for vermicomposting of filter mud as well as the quality of the end product. The filter mud blended with saw dust can be directly converted into good quality fertilizer (vermicompost). Eight different reactors including three monocultures and four polycultures of E. fetida, E. eugeniae and P. excavatus and one control were used for the experiment. Vermicomposting resulted in significant reduction in C/N ratio, pH, total organic matter (TOC) but increase in electrical conductivity (EC), total nitrogen (TN), total phosphorus (TP) and macronutrients (K, Ca and Na). Oxygen uptake rate (OUR) dropped up to 1.64–1.95 mg/g (volatile solids) VS/day for monoculture reactors and 1.45–1.78 mg/g VS/day for polycultures reactors, respectively, after 45 days of vermicomposting. Cocoon production and the earthworm biomass increased as vermicomposting progressed. On an overall the mono as well as polyculture reactors produced high quality stable compost free from pathogens and no specific differentiation could be inferred between the reactors.  相似文献   

17.
Ammonia accumulation is one of the main causes of the loss of methane production observed during fermentation. We investigated the effect of addition of carbon fiber textiles (CFT) to thermophilic methanogenic bioreactors with respect to ammonia tolerance during the process of degradation of artificial garbage slurry, by comparing the performance of the reactors containing CFT with the performance of reactors without CFT. Under total ammonia-N concentrations of 3,000 mg L−1, the reactors containing CFT were found to mediate stable removal of organic compounds and methane production. Under these conditions, high levels of methanogenic archaea were retained at the CFT, as determined by 16S rRNA gene analysis for methanogenic archaea. In addition, Methanobacterium sp. was found to be dominant in the suspended fraction, and Methanosarcina sp. was dominant in the retained fraction of the reactors with CFT. However, the reactors without CFT had lower rates of removal of organic compounds and production of methane under total ammonia-N concentrations of 1,500 mg L−1. Under this ammonia concentration, a significant accumulation of acetate was observed in the reactors without CFT (130.0 mM), relative to the reactors with CFT (4.2 mM). Only Methanobacterium sp. was identified in the reactors without CFT. These results suggest that CFT enables stable proliferation of aceticlastic methanogens by preventing ammonia inhibition. This improves the process of stable garbage degradation and production of methane in thermophilic bioreactors that include high levels of ammonia.  相似文献   

18.
In this study, effluent sludge from a high-rate Anammox reactor was used to re-start new Anammox reactors for the reactivation of Anammox granular sludge. Different start-up strategies were evaluated in six upflow anaerobic sludge blanket (UASB) reactors (R1–R6) for their effect on nitrogen removal performance. Maximal nitrogen removal rates (NRRs) greater than 20 kg N/m3/day were obtained in reactors R3–R5, which were seeded with mixed Anammox sludge previously stored for approximately 6 months and 1 month. A modified Boltzmann model describing the evolution of the NRR fit the experimental data well. An amount of sludge added to the UASB reactor or decreasing the loading rate proved effective in relieving the substrate inhibition and increasing the NRR. The modified Stover–Kincannon model fit the nitrogen removal data in the Anammox reactors well, and the simulation results showed that the Anammox process has great nitrogen removal potential. The observed inhibition in the Anammox reactors may have been caused by high levels of free ammonia. The sludge used to seed the reactors did not settle well; sludge flotation was observed even after the reactors were operated for a long time at a floating upward velocity (Fs) of greater than 100 m/h. The settling sludge, however, exhibited good settling properties. Scanning electron microscopy showed that the Anammox granules consisted mainly of spherical and elliptical bacteria with abundant filaments on their surface. Hollows in the granules were also present, which may have contributed to sludge floatation.  相似文献   

19.
Karim K  Gupta SK 《Biodegradation》2002,13(5):353-360
The removal of nitrophenols under denitrifying conditions was studied in bench-scale upflow anaerobic sludge blanket (UASB) reactors (R1, R2, R3 and R4) using three different carbon sources. Initially acetate was used as carbon source (substrate) in all the four reactors followed by glucose and methanol. Reactor R1 was kept as control and R2, R3, R4 were fed with 30 mg/l concentration of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), respectively. Throughout the study the hydraulic retention time (HRT) and COD/NO3 -–N ratio were kept as 24 h and 10, respectively. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found as the major intermediate metabolites of 2-NP, 4-NP and 2,4-DNP degradation, respectively. Methanol was found to be a better carbon source for 4-NP and 2,4-DNP degradation as compared to acetate and glucose, while 2-NP degradation was not influenced much by the change of substrate. Nitrate nitrogen removal was always more than 99%. COD removal efficiency of the nitrophenol fed reactors varied from 85.7% to 97.7%. The oxidation-reduction potential (ORP) inside the reactors dropped, up to –300 mv, with glucose as carbon source. As the reactors were switched over to methanol, ORP increased to –190 mv. The granular sludge developed inside the reactors was light brown in colour when acetate and glucose were used as substrate, which turned dark brown to black at the end of methanol run. Biomass yield in terms of volatile suspended solids was observed as 0.15, 0.089 and 0.14 g per gram of COD removal for acetate, glucose and methanol, respectively.  相似文献   

20.
In this study, a microbial consortium from an acid-treated rumen fluid was used to improve the yields of H2 production from paper residues in batch reactors. The anaerobic batch reactors, which contained paper and cellulose, were operated under three conditions: (1) 0.5 g paper/L, (2) 2 g paper/L, and (3) 4 g paper/L. Cellulase was added to promote the hydrolysis of paper to soluble sugars. The H2 yields were 5.51, 4.65, and 3.96 mmol H2/g COD, respectively, with substrate degradation ranging from 56 to 65.4 %. Butyric acid was the primary soluble metabolite in the three reactors, but pronounced solventogenesis was detected in the reactors incubated with increased paper concentrations (2.0 and 4.0 g/L). A substantial prevalence of Clostridium acetobutylicum (99 % similarity) was observed in the acid-treated rumen fluid, which has been recognized as an efficient H2-producing strain in addition to ethanol and n-butanol which were also detected in the reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号