首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Hypoalbuminemia is a measure of malnutrition, inflammation and a predictor of mortality in uremia. It is controversial whether albumin levels per se are associated with the clinical outcomes in uremic patients. The co-occurrence of hypoalbuminemia and oxidative stress in hemodialysis (HD) patients led us to hypothesize that oxidative modifications of albumin decrease its detection and influence albumin quantification.

Methods

Albumin levels are determined in clinical laboratories mainly by the bromocresol green (BCG) spectrophotometric assay. The detection of serum albumin was investigated in HD patients and in healthy controls using an “albumin-detection index”, defined as the ratio between BCG read-out (albumin-specific) to total albumin. The detection efficacy of albumin was also investigated in vitro, after glycoxidation, HOCl-mediated-oxidation, and metal-catalyzed-oxidation. Oncotic pressure was measured to assess albumin function.

Results

The albumin-detection index of patients was significantly lower compared with controls, correlating negatively with oxidative stress markers (serum advanced oxidation protein products-AOPP and glycoxidized serum albumin) and positively with serum albumin levels. The albumin-detection index was also decreased after in vitro oxidation.

Conclusions

The study shows, both in vivo and in vitro, decreased detection of oxidized albumin by a commonly-used clinical assay, thus providing the molecular link between oxidative stress and hypoalbuminemia. Oxidative stress as reflected by hypoalbuminemia, rather than actual albumin levels, may be related to cardiovascular morbidity outcomes in HD patient.  相似文献   

2.
Among substances which may prove useful in preventing or reducing the progression of glycooxidative modifications of proteins, heparin plays a unique role. To elucidate the mechanism whereby heparin may favourably influence the protein structure during glycation, human serum albumin (HSA) was glycated with both 25 and 50 mM glucose in the absence and presence of 12 microg.mL(-1) low-molecular-mass heparin. Glycation caused: (a) modifications of fluorescence emission and excitation spectra consistent with the covalent attachment of glucose to protein; (b) a significant increase in the esterase activity of HSA on p-nitrophenyl acetate; (c) a reduced susceptibility to tryptic digestion and (d) enhanced formation of high-molecular mass aggregates of HSA. These alterations were accompanied by oxidative reactions, as the EPR spectra showed a clear-cut radical signal, dependent on glucose concentration, further confirmed by measurement of the carbonyl content of HSA, as an indirect proof of oxidative damage. In the presence of heparin all the above alterations, especially at 25 mM glucose, turned out to be antagonized. The effects of heparin were dependent on its specific binding to HSA, which triggered an oxidative mechanism strikingly different from that caused by glucose. In the presence of heparin, only the radical species catalyzed by heparin was detected across all samples of glycated HSA, irrespective of glucose concentration. In addition, at 25 mM glucose, enhancement of the oxidative capacity of heparin was also observed. The results demonstrate that the oxidative mechanism sustained by heparin mediates biological effects that may be beneficial in reducing the extent of glycooxidative damage on HSA.  相似文献   

3.
Oxidative modifications in proteins can participate in the regulation of cellular functions and are frequently observed in numerous states of diseases. Albumin can undergo increased glycation during diabetes. An accumulation of oxidatively modified proteins in human mature adipocytes incubated with glycated albumin has previously been described. This study herein reports the identification of specifically carbonylated targets following separation of the cell proteins by 2D gels, Western blotting and mass spectrometry analyses. It identified eight oxidatively modified proteins, two of which (ACTB and Annexin A2) appeared as significantly more carbonylated in adipocytes treated with glycated albumin than with native albumin. Intracellular stress, evaluated in SW872 cell line, showed an impairment in the protective antioxidant action exerted by native BSA after the glycation of the protein. Decreased proteasome peptidase activities were found in glycated BSA-treated mature adipocytes. The data suggest an association of oxidative damage with the progression of diabetes disorders at the adipocytes level.  相似文献   

4.
Oxidative modifications in proteins can participate in the regulation of cellular functions and are frequently observed in numerous states of diseases. Albumin can undergo increased glycation during diabetes. An accumulation of oxidatively modified proteins in human mature adipocytes incubated with glycated albumin has previously been described. This study herein reports the identification of specifically carbonylated targets following separation of the cell proteins by 2D gels, Western blotting and mass spectrometry analyses. It identified eight oxidatively modified proteins, two of which (ACTB and Annexin A2) appeared as significantly more carbonylated in adipocytes treated with glycated albumin than with native albumin. Intracellular stress, evaluated in SW872 cell line, showed an impairment in the protective antioxidant action exerted by native BSA after the glycation of the protein. Decreased proteasome peptidase activities were found in glycated BSA-treated mature adipocytes. The data suggest an association of oxidative damage with the progression of diabetes disorders at the adipocytes level.  相似文献   

5.
Previous studies suggest that oxidative modifications of serum albumin lead to underestimation of albumin concentrations using conventional assays. In addition, oxidation of serum albumin may cause neutrophil activation and further oxidation of albumin, which may result in a series of reciprocal cyclical processes. Because hypoalbuminemia, systemic inflammation, and oxidative stress are common in diabetic nephropathy patients, the aim of this study was to show that albumin modifications and neutrophil activation underlie these reciprocal systemic processes. Blood samples from a cohort of 19 patients with diabetic nephropathy and 15 healthy controls were used for albumin separation. An oxidation-dependent "albumin detection index," representing the detection efficacy of the universal bromocresol green assay, was determined for each subject. This index was correlated with serum albumin levels, various markers of oxidative stress or inflammation, and kidney function. Activation of separated neutrophils by glycoxidized albumin was assessed by the release of neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase (MPO). The albumin detection index of diabetic nephropathy patients was significantly lower compared to that of controls, correlating positively with serum levels of albumin and kidney function and negatively with albumin glycoxidation and inflammatory markers. Glycoxidized albumin had a direct role in neutrophil activation, resulting in NGAL and MPO release. The hypoalbuminemia observed in patients with diabetic nephropathy partially results from underestimation of modified/oxidized albumin using the bromocresol green assay. However, modified or oxidized albumin may lead to a cycle of accelerated oxidative stress and inflammation involving neutrophil activation. We suggest that the albumin detection index, a new marker of oxidative stress, may also serve as a biomarker of diabetic nephropathy severity and its progression.  相似文献   

6.
The binding of pyridoxal 5'-phosphate to human serum albumin   总被引:1,自引:0,他引:1  
Most of the pyridoxal 5'-phosphate (PLP) in plasma is bound to protein, primarily albumin. Binding to protein is probably important in transporting PLP in the circulation and in regulating its metabolism. The binding of PLP to human serum albumin (HSA) was studied using absorption spectral analysis, equilibrium dialysis, and inhibition studies. The kinetics of the changes in the spectrum of PLP when mixed with an equimolar concentration of HSA at pH 7.4 followed a model for two-step consecutive binding with rate constants of 7.72 mM-1 min-1 and 0.088 min-1. The resulting PLP-HSA complex had absorption peaks at 338 and 414 nm and was reduced by potassium borohydride. The 414-nm peak is probably due to a protonated aldimine formed between PLP and HSA. The binding of PLP to bovine serum albumin (BSA) at equimolar concentrations at pH 7.4 occurred at about 10% the rate of its binding to HSA. The final PLP-BSA complex absorbed maximally at 334 nm and did not appear to be reduced with borohydride. Equilibrium dialysis of PLP and HSA indicated that there were more than one class of binding sites of HSA for PLP. There was one high affinity site with a dissociation constant of 8.7 microM and two or more other sites with dissociation constants of 90 microM or greater. PLP binding to HSA was inhibited by pyridoxal and 4-pyridoxic acid. It was not inhibited appreciably by inorganic phosphate or phosphorylated compounds. The binding of PLP to BSA was inhibited more than its binding to HSA by several compounds containing anionic groups. It is concluded that PLP binds differently to HSA than it does to BSA.  相似文献   

7.
Advanced glycation end-products (AGEs) trigger multiple metabolic disorders in the vessel wall that may in turn lead to endothelial dysfunction. The molecular mechanisms by which AGEs generate these effects are not completely understood. Oxidative stress plays a key role in the development of deleterious effects that occur in endothelium during diabetes. Our main objectives were to further understand how AGEs contribute to reactive oxygen species (ROS) overproduction in endothelial cells and to evaluate the protective effect of an antioxidant plant extract. The human endothelial cell line EA.hy926 was treated with native or modified bovine serum albumin (respectively BSA and BSA-AGEs). To monitor free radicals formation, we used H2DCF-DA, dihydroethidium (DHE), DAF-FM-DA and MitoSOX Red dyes. To investigate potential sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial inhibitors were used. The regulation of different types of ROS by the polyphenol-rich extract from the medicinal plant Doratoxylon apetalum was also studied for a therapeutic perspective. BSA-AGEs exhibited not only less antioxidant properties than BSA, but also pro-oxidant effects. The degree of albumin glycoxidation directly influenced oxidative stress through a possible communication between NADPH oxidase and mitochondria. D. apetalum significantly decreased intracellular hydrogen peroxide and superoxide anions mainly detected by H2DCF-DA and DHE respectively. Our results suggest that BSA-AGEs promote a marked oxidative stress mediated at least by NADPH oxidase and mitochondria. D. apetalum plant extract appeared to be an effective antioxidant compound to protect endothelial cells.  相似文献   

8.
Background  Baboon in vitro fertilization requires capacitated sperm in appropriate media. In this study, we compared the effect of baboon serum (Bas), human serum albumin (HSA) and bovine serum albumin (BSA) on baboon sperm capacitation.
Methods  Five males (n = 5) were electroejaculated and 43 oocytes retrieved from super-ovulated female baboons (n = 10). Each sperm sample was assessed for initial motility and concentration before and after swim-up. For swim-up, each sperm sample was incubated separately in Biggers–Whitten–Whittingham media containing either BaS, HSA, BSA or without protein supplementation (control). After swim-up, each sperm aliquot was incubated with two to three oocytes. The number of sperm bound to the zona was evaluated after overnight incubation.
Results  Sperm motility and zona binding was significantly higher after capacitation in media supplemented with BaS than in HSA or BSA or in media without protein supplementation ( P  < 0.05).
Conclusion  Baboon serum is superior to HSA or BSA for baboon sperm capacitation and zona binding.  相似文献   

9.
Oxidative modifications of lysozyme (Lyso) and human serum albumin (HSA) mediated by photoinduced processes and peroxyl radicals were studied. Both oxidative conditions were applied to the separate proteins and their mixtures. Dimerization and fragmentation of the proteins do not correlate with the formation of carbonyls or peroxides, implying that evaluation of these changes is not an index of the overall oxidative modification of a protein. The results obtained also show that the hypothesis that the electrostatic interactions of Lyso and HSA could facilitate the formation of Lyso-HSA dimers in the presence of a source of reactive oxygen species was verified in both ROS-producing systems.  相似文献   

10.
Chesne S  Rondeau P  Armenta S  Bourdon E 《Biochimie》2006,88(10):1467-1477
Non-enzymatic glycosylation (glycation) and oxidative damages represent major research areas insofar as such modifications of proteins are frequently observed in numerous states of disease. Albumin undergoes structural and functional alterations, caused by increased glycosylation during non insulin-dependent diabetes mellitus, which is closely linked with the early occurrence of vascular complications. In this work, we first characterized structural modifications induced by the glycation of bovine serum albumin (BSA). A pathophysiological effect of glycated BSA was identified in primary cultures of human adipocytes as it induces an accumulation of oxidatively modified proteins in these cells. BSA was incubated in the presence or absence of physiological, pathological or supra-physiological concentrations of glucose at 37 degrees C for 7 weeks. Enhanced BSA glycation percentages were determined using boronate affinity columns. The occurrence of oxidative modifications was found to be enhanced in glycated BSA, after determination of the free thiol groups content, electrophoretic migration and infrared spectrometry spectra. An accumulation of carbonyl-modified proteins and an increased release of isoprostane were observed in cell media following the exposure of adipocytes to glycated albumin. These results provide a new possible mechanism for enhanced oxidative damages in diabetes.  相似文献   

11.
Non-enzymatic glycation, as the chain reaction between reducing sugars and the free amino groups of proteins, has been shown to correlate with severity of diabetes and its complications. Cyperus rotundus (Cyperaceae) is used both as a food to promote health and as a drug to treat certain diseases. In this study, considering the antioxidative effects of C. rotundus, we examined whether C. rotundus also protects against protein oxidation and glycoxidation. The protein glycation inhibitory activity of hydroalcoholic extract of C. rotundus was evaluated in vitro using a model of fructose-mediated protein glycoxidation. The C. rotundus extract with glycation inhibitory activity also demonstrated antioxidant activity when a ferric reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays as well as metal chelating activity were applied. Fructose (100 mM) increased fluorescence intensity of glycated bovine serum albumin (BSA) in terms of total AGEs during 14 days of exposure. Moreover, fructose caused more protein carbonyl (PCO) formation and also oxidized thiol groups more in glycated than in native BSA. The extract of C. rotundus at different concentrations (25–250 μg/ml) has significantly decreased the formation of AGEs in term of the fluorescence intensity of glycated BSA. Furthermore, we demonstrated the significant effect of C. rotundus extract on preventing oxidative protein damages including effect on PCO formation and thiol oxidation which are believed to form under the glycoxidation process. Our results highlight the protein glycation inhibitory and antioxidant activity of C. rotundus. These results might lead to the possibility of using the plant extract or its purified active components for targeting diabetic complications.  相似文献   

12.

Background

Oxidative damage results in protein modification, and is observed in numerous diseases. Human serum albumin (HSA), the most abundant circulating protein in the plasma, exerts important antioxidant activities against oxidative damage.

Scope of review

The present review focuses on the characterization of chemical changes in HSA that are induced by oxidative damage, their relevance to human pathology and the most recent advances in clinical applications.

Major conclusions

The antioxidant properties of HSA are largely dependent on Cys34 and its contribution to the maintenance of intravascular homeostasis, including protecting the vascular endothelium under disease conditions related to oxidative stress. Recent studies also evaluated the susceptibility of other important amino acid residues to free radicals. The findings suggest that a redox change in HSA is related to the oxidation of several amino acid residues by different oxidants. Further, Cys34 adducts, such as S-nitrosylated and S-guanylated forms also play an important role in clinical applications. On the other hand, the ratio of the oxidized form to the normal form of albumin (HMA/HNA), which is a function of the redox states of Cys34, could serve as a useful marker for evaluating systemic redox states, which would be useful for the evaluation of disease progression and therapeutic efficacy.

General significance

This review provides new insights into our current understanding of the mechanism of HSA oxidation, based on in vitro and in vivo studies.This article is part of a Special Issue entitled Serum Albumin.  相似文献   

13.
Zhou Q  Matsumoto S  Ding LR  Fischer NE  Inaba T 《Life sciences》2004,75(18):2145-2155
The effect of human serum albumin (HSA), in its endogenous, free fatty acid free (FAF) and globulin free (GF) form, on the activity of CYP2C9 was studied in human liver microsomes using tolbutamide as the substrate. The widely used BSA was included to assess the differential effect of BSA and HSA. CYP2C9 activity was expressed as CLint (Vmax/Km). HSA(FAF) and BSA showed a concentration-dependent and biphasic (activation and inhibition) interaction with CYP2C9 activity. HSA(GF) and HSA exhibited an inhibitory effect, with an inhibition constant, Ki, of 19.9 microM (0.13% albumin) and 42.2 microM (0.35% albumin), respectively. Enzyme-kinetics revealed that the activation is accompanied by a decrease in Km values, while with inhibition Km values increased. A simplified method to calculate clearance, utilizing a single slope (V/S) determination based on V over the lowest linear range of [S] (designated as CLone) was assessed. Virtually identical values were obtained for CLint and CLone. The free-drug hypothesis was tested by comparing ratios of relative CLint/unbound fraction (FDH Test ratio). The FDH Test ratio for HSA was about 1, indicating that HSA binding of tolbutamide reduced the CYP2C9 activity in accord with the free-drug hypothesis. The FDH Test ratios for BSA and HSA(FAF) were 3.7 and 3.0, revealing a monophasic activation of CYP2C9. For 2%HSA(GF) the ratio of 0.3 confirmed inhibition. As revealed by their removal, free fatty acids and globulins, significantly alter the interaction of HSA with CYP2C9. In addition, HSA and BSA showed different effects on the oxidation of tolbutamide by CYP2C9.  相似文献   

14.
Glucose can react non-enzymatically with amino groups of, for example, proteins, to yield derivatives termed advanced glycation end products (AGE), which contribute to many chronic progressive diseases associated with microvascular complications. The study aimed to determine the effect of AGE-modified albumin on THP-1 cells and human monocyte-derived macrophages. Bovine serum albumin (BSA) or human serum albumin (HSA), modified by glucose-derived AGE, was prepared by incubation with glucose for differing periods of time. Alternatively, BSA was incubated with sodium cyanoborohydride and glyoxylic acid to produce N(epsilon)-(carboxymethyl)lysine-modified BSA (CML-BSA). Stimulation for 24h of THP-1 cells with BSA, incubated for 6-8 weeks with glucose, induced significant VEGF release. Human monocyte-derived macrophages stimulated with extensively glycated HSA also showed significant VEGF release, as well as upregulation of IL-8 production, incubation for 6h with extensively glycated HSA increased release of TNFalpha and expression of tissue factor. Finally, addition of CML-BSA resulted in significant induction of TNFalpha and VEGF release. We demonstrate that a range of different methods of glycation of BSA and HSA, including CML-BSA, resulted in the induction of VEGF, TNFalpha, IL-8 and expression of tissue factor, according to length of stimulation and different glycation products used, suggesting that AGE-induced activation of macrophages may contribute to vascular complications by regulation of angiogenic, inflammatory and pro-coagulant processes.  相似文献   

15.
The plasma proteins hemopexin (Hx) and albumin (Alb) are known to bind heme with high and medium affinity, respectively. To study how this binding modifies heme catalytic reactivity, the effects of Hx, human serum Alb (HSA), and bovine serum Alb (BSA) on the peroxidase- and catalaselike activities of hemin were investigated. These hemin activities were found to be inhibited by 50 to 60% with either HSA or BSA, and by 80 to 90% with Hx. The heme complexes with Hx or Alb (1:1 = protein:heme) therefore had a much lower reactivity toward H2O2 and Cum-OOH than the nonprotein heme. A kinetic analysis suggested that binding to Hx or Alb inhibited the primary activation of heme by H2O2, the step common for both peroxidase- and catalaselike activities of hemin. It is thought that by complexing heme, the Hx and Alb can prevent the toxic effects of extracellular heme in blood plasma.  相似文献   

16.
Kinetin inhibits protein oxidation and glycoxidation in vitro   总被引:8,自引:0,他引:8  
We tested the ability of N(6)-furfuryladenine (kinetin) to protect against oxidative and glycoxidative protein damage generated in vitro by sugars and by an iron/ascorbate system. At 50 microM, kinetin was more efficient (82% inhibition) than adenine (49% inhibition) to inhibit the bovine serum albumin (BSA)-pentosidine formation in slow and fast glycation/glycoxidation models. Kinetin also inhibited the formation of BSA-carbonyls after oxidation significantly more than adenine did. However both compounds inhibited the advanced glycation end product (AGE) formation to the same extent (59-68% inhibition). At 200 microM, kinetin but not adenine, limited the aggregation of BSA during glycation. These data suggest that kinetin is a strong inhibitor of oxidative and glycoxidative protein-damage generated in vitro.  相似文献   

17.
Efficient and specific removal of albumin from human serum samples   总被引:1,自引:0,他引:1  
Patient serum or plasma is frequently monitored for biochemical markers of disease or physiological status. Many of the rapidly evolving technologies of proteome analysis are being used to find additional clinically informative protein markers. The unusually high abundance of albumin in serum can interfere with the resolution and sensitivity of many proteome profiling techniques. We have used monoclonal antibodies against human serum albumin (HSA) to develop an immunoaffinity resin that is effective in the removal of both full-length HSA and many of the HSA fragments present in serum. This resin shows markedly better performance than dye-based resins in terms of both the efficiency and specificity of albumin removal. Immunoglobulins are another class of highly abundant serum protein. When protein G resin is used together with our immunoaffinity resin, Ig proteins and HSA can be removed in a single step. This strategy could be extended to the removal of any protein for which specific antibodies or affinity reagents are available.  相似文献   

18.
The functions of N-acylethanolamines, minor constituents of mammalian cells, are poorly understood. It was suggested that NAEs might have some pharmacological actions and might serve as a cytoprotective response, whether mediated by physical interactions with membranes or enzymes or mediated by activation of cannabinoid receptors. Albumins are identified as the major transport proteins in blood plasma for many compounds including fatty acids, hormones, bilirubin, ions, and many drugs. Moreover, albumin has been used as a model protein in many areas, because of its multifunctional binding properties. Bovine (BSA) and human (HSA) serum albumin are similar in sequence and conformation, but differ for the number of tryptophan residues. This difference can be used to monitor unlike protein domains. Our data suggest that NOEA binds with high affinity to both albumins, modifying their conformational features. In both proteins, NOEA molecules are linked with higher affinity to hydrophobic sites near Trp-214 in HSA or Trp-212 in BSA. Moreover, fluorescence data support the hypothesis of the presence of other NOEA binding sites on BSA, likely affecting Trp-134 environment. The presence of similar binding sites is not measurable on HSA, because it lacks of the second Trp residue.  相似文献   

19.
The binding affinity of fluorescein and of phenylbutazone to human serum albumin (HSA) and to bovine serum albumin (BSA), respectively, as well as of the two drugs together to each protein in dilute aqueous solution has been studied by means of gel permeation chromatography, circular dichroism, U.V. absorption and fluorescence spectroscopy. Identity of and/or interdependence between primary binding sites for the two ligands considered on HSA and BSA are evidenced and correlated with a simple theoretical approach to mixed drugs binding.  相似文献   

20.
Bovine serum albumin (BSA) has various applications in blood group serology and different research purposes. In this study purification of BSA has been compared with human serum albumin (HSA) using modified ethanol precipitation method based on the method of Cohn. The purification process was carried out under controlled conditions, particularly of ethanol concentration, pH, ionic strength and temperature. It was revealed that the produced BSA and HSA have purity more than 95%. It is obvious that HSA can be used, as a drug when the amount of its polymers is less than 5% whereas polymer generation is required in order to enhance the potentiating properties of BSA in agglutination of red cells. We propose here a simple and rapid two-step method for simultaneously purification and polymerization of BSA. By this method simply BSA with desired amount of polymers was obtained by 40% ethanol concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号