首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SEPT4 is a member of the mammalian septin family of GTPases. Mammalian septins are conserved proteins which form heteropolymers in vivo and which are implicated in a variety of cellular functions such as cytokinesis, exocytosis, and vesicle trafficking. However, their structural properties and modes of action are largely unknown. There is a limited, but as yet inconclusive, amount of experimental data suggesting that SEPT4 may accumulate in tau-based filamentous deposits and cytoplasmic inclusions in Alzheimer's and Parkinson's disease, respectively. Here we report an intermediate structure of the GTPase domain of human SEPT4 (SEPT4-G) during unfolding transitions induced by temperature. This partially unfolded intermediate, which is rich in beta-sheet and free of bound nucleotide, was plagued by irreversible aggregation. The aggregates have the ability to bind specific dyes such as Congo red and thioflavin-T, suggesting they are amyloid in nature. Under electron microscopy, fibers of variable diameter extending for several micrometers in length can be visualized. This is the first report of amyloid formation by a septin or domain thereof, and the capacity of SEPT4-G to form such fibrillar aggregates may shed some light on the current discussion concerning the formation of homo- and heteropolymers of septins in vitro.  相似文献   

2.
Septins are a conserved group of GTP-binding proteins that form hetero-oligomeric complexes which assemble into filaments. These are essential for septin function, including their role in cytokinesis, cell division, exocytosis and membrane trafficking. Septin 2 (SEPT2) is a member of the septin family and has been associated with neurofibrillary tangles and other pathological features of senile plaques in Alzheimer's disease. An in silico analysis of the amino acid sequence of SEPT2 identified regions with a significant tendency to aggregate and/or form amyloid. These were all observed within the GTP-binding domain. This was consistent with the experimental identification of a structure rich in β-sheet during temperature induced unfolding transitions observed for both the full length protein and the GTP-binding domain alone. This intermediate state is characterized by irreversible aggregation and has the ability to bind Thioflavin-T, suggesting its amyloid nature. Under electron microscopy, fibers extending for several micrometers in length could be visualized. The results shown in this study support the hypothesis that single septins, when present in excess or with unbalanced stoichiometries, may be unstable and assemble into amyloid-like structures.  相似文献   

3.
The septin is a conserved GTP binding protein family which is involved in multiple cellular processes. Many evidences have indicated that some septins were abnormally expressed in certain kinds of tumors and the altered expressions were related to the process of carcinogenesis. To better understand the relationship between septins and cancer, we compared the expression of 14 human septin family members in 35 kinds of tumor types with their normal counterparts using the publicly available ONCOMINE microarray database. We found altered expression of most septin members in many kinds of tumors. Significantly, SEPT2, SEPT8, SEPT9, SEPT11 were consistently up-regulated, and SEPT4, SEPT10 were down-regulated in most cancer types investigated. Furthermore, the abnormal expressions were also in accordance with the tumor malignances or prognosis of corresponding cancer patients. These findings have contributed to the view that septins may belong to a kind of cancer critical genes. More septins might act as potential oncogenes or tumor suppressor genes in cancer development.  相似文献   

4.
In many age-related and neurological diseases, formerly native proteins aggregate via formation of a partially unfolded intermediate. γS-Crystallin is a highly stable structural protein of the eye lens. In the mouse Opj cataract, a non-conservative F9S mutation in the N-terminal domain core of γS allows the adoption of a native fold but renders the protein susceptible to temperature- and concentration-dependent aggregation, including fibril formation. Hydrogen/deuterium exchange and denaturant unfolding studies of this mutant protein (Opj) have suggested the existence of a partially unfolded intermediate in its aggregation pathway. Here, we used NMR and fluorescence spectroscopy to obtain evidence for this intermediate. In 3.5 M urea, Opj forms a stable and partially unfolded entity that is characterized by an unstructured N-terminal domain and a largely intact C-terminal domain. Under physiologically relevant conditions, Carr-Purcell-Meiboom-Gill T2-relaxation dispersion experiments showed that the N-terminal domain residues were in conformational exchange with a loosely structured intermediate with a population of 1-2%, which increased with temperature. This provides direct evidence for a model in which proteins of native fold can explore an intermediate state with an increased propensity for formation of aggregates, such as fibrils. For the crystallins, this shows how inherited sequence variants or environmentally induced modifications can destabilize a well-folded protein, allowing the formation of intermediates able to act as nucleation sites for aggregation and the accumulation of light-scattering centers in the cataractous lens.  相似文献   

5.
Mammalian septins are required for phagosome formation   总被引:1,自引:0,他引:1  
Septins are members of a highly conserved family of filamentous proteins that are required in many organisms for the completion of cytokinesis. In addition, septins have been implicated in a number of important cellular processes and have been suggested to have roles in regulating membrane traffic. Given the proposed role of septins in cell membrane dynamics, we investigated the function of septins during FcgammaR-mediated phagocytosis. We show that several septins are expressed in RAW264.7 and J774 mouse macrophage cell lines and that SEPT2 and SEPT11 are colocalized with submembranous actin-rich structures during the early stages of FcgammaR-mediated phagocytosis. In addition, SEPT2 accumulation is seen in primary human neutrophils and in nonprofessional phagocytes. The time course of septin accumulation mirrors actin accumulation and is inhibited by latrunculin and genistein, but not other inhibitors of phagocytosis. Inhibition of septin function by transient expression of the BD3 domain of BORG3, known to cause septin aggregation, or depletion of SEPT2 or SEPT11 by RNAi, significantly inhibited FcgammaR-mediated phagocytosis of IgG-coated latex beads. Interestingly, this occurred without affecting the accumulation of actin or the actin-associated protein coronin-1. These observations show that, although not necessary for actin recruitment, septins are required for efficient FcgammaR-mediated phagocytosis.  相似文献   

6.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

7.
We studied the cold unfolding of myoglobin with Fourier transform infrared spectroscopy and compared it with pressure and heat unfolding. Because protein aggregation is a phenomenon with medical as well as biotechnological implications, we were interested in both the structural changes as well as the aggregation behavior of the respective unfolded states. The cold- and pressure-induced unfolding both yield a partially unfolded state characterized by a persistent amount of secondary structure, in which a stable core of G and H helices is preserved. In this respect the cold- and pressure-unfolded states show a resemblance with an early folding intermediate of myoglobin. In contrast, the heat unfolding results in the formation of the infrared bands typical of intermolecular antiparallel beta-sheet aggregation. This implies a transformation of alpha-helix into intermolecular beta-sheet. H/2H-exchange data suggest that the helices are first unfolded and then form intermolecular beta-sheets. The pressure and cold unfolded states do not give rise to the intermolecular aggregation bands that are typical for the infrared spectra of many heat-unfolded proteins. This suggests that the pathways of the cold and pressure unfolding are substantially different from that of the heat unfolding. After return to ambient conditions the cold- or pressure-treated proteins adopt a partially refolded conformation. This aggregates at a lower temperature (32 degrees C) than the native state (74 degrees C).  相似文献   

8.
9.
The septins are a conserved family of guanosine-5'-triphosphate (GTP)-binding proteins. In mammals they are involved in a variety of cellular processes, such as cytokinesis, exocytosis, and vesicle trafficking. Specifically, SEPT4 has also been shown to be expressed in both human colorectal cancer and malignant melanoma, as well as being involved in neurodegenerative disorders. However, many of the details of the modes of action of septins in general remain unclear, and little is known of their detailed molecular architecture. Here, we define explicitly and characterize the domains of human SEPT4. Regions corresponding to the N-terminal, GTPase, and C-terminal domains as well as the latter two together were successfully expressed in Escherichia coli in soluble form and purified by affinity and size-exclusion chromatographies. The purified domains were analyzed by circular dichroism spectroscopy, fluorescence spectroscopy, dynamic light scattering, and small-angle X-ray scattering, as well as with bioinformatics tools. Of the three major domains that comprise SEPT4, the N-terminal domain contains little regular secondary structure and may be intrinsically unstructured. The central GTPase domain is a mixed alpha/beta structure, probably based on an open beta sheet. As defined here, it is catalytically active and forms stable homodimers in vitro. The C-terminal domain also forms homodimers and can be divided into two regions, the second of which is alpha-helical and consistent with a coiled-coil structure. These studies should provide a useful basis for future biophysical studies of SEPT4, including the structural basis for their involvement in diseases such as cancer and neurodegenerative disorders.  相似文献   

10.
The [2Fe–2S] ferredoxin from the extreme haloarchaeon Halobacterium salinarum is stable in high (>1.5 M) salt concentration. At low salt concentration the protein exhibits partial unfolding. The kinetics of unfolding was studied in low salt and in presence of urea in order to investigate the role of salt ions on the stability of the protein. The urea dependent unfolding, monitored by fluorescence of the tryptophan residues and circular dichroism, suggests that the native protein is stable at neutral pH, is destabilized in both acidic and alkaline environment, and involves the formation of kinetic intermediate(s). In contrast, the unfolding kinetics in low salt exhibits enhanced rate of unfolding with increase in pH value and is a two state process without the formation of intermediate. The unfolding at neutral pH is salt concentration dependent and occurs in two stages. The first stage, involves an initial fast phase (indicative of the formation of a hydrophobic collapsed state) followed by a relatively slow phase, and is dependent on the type of cation and anion. The second stage is considerably slower, proceeds with an increase in fluorescence intensity and is largely independent of the nature of salt. Our results thus show that the native form of the haloarchaeal ferredoxin (in high salt concentration) unfolds in low salt concentration through an apparently hydrophobic collapsed form, which leads to a kinetic intermediate. This intermediate then unfolds further to the low salt form of the protein.  相似文献   

11.
Wiseman RL  Powers ET  Kelly JW 《Biochemistry》2005,44(50):16612-16623
Amyloid diseases are caused by the aberrant assembly of a protein in the extracellular space. Folded proteins are not amyloidogenic; however, the native state is generally in equilibrium with a minor population of unfolded or partially folded aggregation-competent conformers outside of the cell. Understanding how the partially unfolded conformers kinetically partition between the competing refolding and aggregation pathways provides insight into how misfolding, which occurs continuously, becomes pathogenic. Towards this end, we have previously studied the amyloidogenicity of transthyretin (TTR), a human beta-sheet-rich homotetrameric protein that must undergo rate-limiting tetramer dissociation and partial monomer unfolding to misassemble into amyloid and other aggregates. We demonstrate herein that TTR homotetramers reassemble by an unusual monomer-dimer-trimer-tetramer (MDRT) pathway. Therefore, the rate of every step in the reassembly pathway is dependent on the concentration of folded TTR monomer. Partitioning soluble TTR monomers between the reassembly pathway and the aggregation pathway should therefore depend on the relative concentrations of aggregates and assembly intermediates. Aggregate clearance is envisioned to play an important role in the partitioning of protein in vivo, where partitioning to the aggregation pathway becomes increasingly favorable under conditions where the concentration of aggregates is increased because aggregate clearance is slow relative to the rate of aggregation. This shift from efficient to inefficient aggregate clearance could occur with aging, offering an explanation for the age-associated nature of these neurodegenerative diseases.  相似文献   

12.
Protein misfolding and aggregation are interconnected processes involved in a wide variety of nonneuropathic, systemic, and neurodegenerative diseases. More generally, if mutations in sequence or changes in environmental conditions lead to partial unfolding of the native state of a protein, it will often aggregate, sometimes into well-defined fibrillar structures. A great deal of interest has been directed at discovering the characteristic features of metastable partially unfolded states that precede the aggregated states of proteins. In this work, human muscle acylphosphatase (AcP) has been first destabilized, by addition of urea or by means of elevated temperatures, and then incubated in the presence of different concentrations of 2,2,2, trifluoroethanol ranging from 5% to 25% (v/v). The results show that AcP is able to form both fibrillar and nonfibrillar aggregates with a high beta-sheet content from partially unfolded states with very different structural features. Moreover, the presence of alpha-helical structure in such a state does not appear to be a fundamental determinant of the ability to aggregate. The lack of ready aggregation under some of the conditions examined here is attributable primarily to the intrinsic properties of the solutions rather than to specific structural features of the partially unfolded states that precede aggregation. Aggregation appears to be favored when the solution conditions promote stable intermolecular interactions, particularly hydrogen bonds. In addition, the structures of the resulting aggregates are largely independent of the conformational properties of their soluble precursors.  相似文献   

13.
Urea-induced unfolding of Escherichia coli citrate synthase occurs in two phases, as monitored by circular dichroism at 222 nm (measuring secondary structure) or by tryptophan fluorescence. In this paper we characterize the intermediate state, which retains about 40% of the ellipticity of the native state, and is stable between 2.5 M and 5.5 M urea, approximately. This intermediate binds significant amounts of the probe for hydrophobic surfaces, anilinonaphthalene sulfonate, but forms aggregates at least as high as an octamer, as shown by transverse urea gradient polyacrylamide electrophoresis. Thermal denaturation of E. coli citrate synthase also produces an intermediate at temperatures near 60 degrees C, which also retains about 40% of the native ellipticity and forms aggregates, as measured by electrospray-ionization/time-of-flight mass spectrometry. We have used a collection of "cavity-forming" mutant proteins, in which bulky buried hydrophobic residues are replaced by alanines, to explore the nature of the intermediate state further. A certain amount of these mutant proteins shows a destabilized intermediate, as measured by the urea concentration range in which the intermediate is observed. These mutants are found in parts of the citrate synthase sequence that, in a native state, form helices G, M, N, Q, R, and S. From this and other evidence, it is argued that the intermediate state is an aggregated state in which these six helices, or parts of them, remain folded, and that formation of this intermediate is also likely to be a key step in the folding of E. coli citrate synthase.  相似文献   

14.
Conformational modifications and changes in the aggregation state of human αB-crystallin were investigated at different concentrations of SDS, KBr, urea, and NH4SCN and at different temperatures. Intrinsic fluorescence measurements indicated complete and reversible unfolding of the protein at 2 M NH4SCN, whereas the concentration of urea required for complete and irreversible unfolding was 6 M. Gel permeation chromatography indicated almost complete dissociation of the micelle-like aggregate of αB-crystallin in 2 M NH4SCN, but only partial dissociation into large-sized aggregates in 6 M urea. Thiocyanate-treated αB-crystallin recovered its chaperone-like activity upon dilution of the dissociating agent, whereas the urea-treated protein did not.  相似文献   

15.
16.
Proteins encoded by the gene segment 6a of the λ variable light-chain repertoire are strongly associated with amyloid deposition. 6aJL2 is a model protein constructed with the predicted sequences encoded by the 6a and JL2 germ line genes. In this work, we characterized the urea- and temperature-induced unfolding of 6aJL2. In the short time scale, spectroscopic, hydrodynamic and calorimetric experiments were compatible with a two-state transition. Furthermore, ΔG, m and the midpoint urea concentration obtained from equilibrium experiments were compatible with those obtained from kinetic experiments. Since fibril formation is a slow process, samples were also incubated for longer times. After incubation for several hours at 37 °C, spectroscopic, hydrodynamic and calorimetric experiments revealed the presence of a partially unfolded off-pathway intermediate around the midpoint urea concentration (1.5-3.0 M urea). In vitro fibrillogenesis assays show that the maximum growth rate for fibril formation and the minimum lag time were obtained at urea concentrations where the partially unfolded state was populated (2.5 M urea at 37 °C). This indicates that this partially unfolded state is critical for in vitro fibril formation. Concentration-dependent kinetics and hydrodynamic properties of the intermediate were consistent with a soluble oligomeric state. The intermediate is formed around the midpoint urea concentration, where the native and unfolded states are equally populated and their rate of interconversion is the slowest. This situation may promote the slow accumulation of an intermediate state that is prone to aggregate.  相似文献   

17.
The unfolding of triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) induced by guanidine hydrochloride (GdnHCl) was characterized. In contrast to other TIMs, where unfolding is a two or three state process, TbTIM showed two intermediates. The solvent exposure of different regions of the protein in the unfolding process was characterized spectroscopically with mutant proteins in which tryptophans (W) were changed to phenlylalanines (F). The midpoints of the transitions measured by circular dichroism, intrinsic fluorescence, and catalytic activity, as well as the increase in 1-aniline 8-naphthalene sulfonate fluorescence, show that the native state was destabilized in the W12F and W12F/W193F mutants, relative to the wild-type enzyme. Using the hydrodynamic profile for the unfolding of a monomeric TbTIM mutant (RMM0-1TIM) measured by size-exclusion chromatography as a standard, we determined the association state of these intermediates: D*, a partially expanded dimer, and M*, a partially expanded monomeric intermediate. High-molecular-weight aggregates were also detected. At concentrations over 2.0 M GdnHCl, the hydrodynamic properties of TbTIM and RMM0-1TIM are the same, suggesting that the dimeric intermediate dissociates and the unfolding proceeds through the denaturation of an expanded monomeric intermediate. The analysis of the denaturation process of the TbTIM mutants suggests a sequence for the gradual exposure of W residues: initially the expansion of the native dimer to form D* affects the environments of W12 and W159. The dissociation of D* to M* and further unfolding of M* to U induces the exposure of W170. The role of protein concentration in the formation of intermediates and aggregates is discussed considering the irreversibility of this unfolding process.  相似文献   

18.
The equilibrium unfolding of the major Physa acuta glutathione transferase isoenzyme (P. acuta GST(3)) has been performed using guanidinium chloride (GdmCl), urea, and acid denaturation to investigate the unfolding intermediates. Protein transitions were monitored by intrinsic fluorescence. The results indicate that unfolding of P. acuta GST(3) using GdmCl (0-3.0M) is a multistep process, i.e., three intermediates coexist in equilibrium. The first intermediate, a partially dissociated dimer, exists at low GdmCl concentration (approximately at 0.7M). At 1.2M GdmCl, a dimeric intermediate with a compact structure was observed. This intermediate undergoes dissociation into structural monomers at 1.75M of GdmCl. The monomeric intermediate started to be completely unfolding at higher GdmCl concentrations (>1.8M). Unfolding using urea (0-7.0M) and acid-induced structures as well as the fluorescence of 8-anilino-1-naphthalenesulfonate in the presence of different GdmCl concentrations confirmed that the unfolding is a multistep process. At concentrations of GdmCl or urea less than the midpoints or at the midpoint pH (pH 4.2-4.6), the unfolding transition is protein concentration independent and involved a change in the subunit tertiary structure yielding a partially active dimeric intermediate. The binding of glutathione to the enzyme active site stabilizes the native dimeric state.  相似文献   

19.

Background

Septins belong to the GTPase superclass of proteins and have been functionally implicated in cytokinesis and the maintenance of cellular morphology. They are found in all eukaryotes, except in plants. In mammals, 14 septins have been described that can be divided into four groups. It has been shown that mammalian septins can engage in homo- and heterooligomeric assemblies, in the form of filaments, which have as a basic unit a hetero-trimeric core. In addition, it has been speculated that the septin filaments may serve as scaffolds for the recruitment of additional proteins.

Methodology/Principal Findings

Here, we performed yeast two-hybrid screens with human septins 1–10, which include representatives of all four septin groups. Among the interactors detected, we found predominantly other septins, confirming the tendency of septins to engage in the formation of homo- and heteropolymeric filaments.

Conclusions/Significance

If we take as reference the reported arrangement of the septins 2, 6 and 7 within the heterofilament, (7-6-2-2-6-7), we note that the majority of the observed interactions respect the “group rule”, i.e. members of the same group (e.g. 6, 8, 10 and 11) can replace each other in the specific position along the heterofilament. Septins of the SEPT6 group preferentially interacted with septins of the SEPT2 group (p<0.001), SEPT3 group (p<0.001) and SEPT7 group (p<0.001). SEPT2 type septins preferentially interacted with septins of the SEPT6 group (p<0.001) aside from being the only septin group which interacted with members of its own group. Finally, septins of the SEPT3 group interacted preferentially with septins of the SEPT7 group (p<0.001). Furthermore, we found non-septin interactors which can be functionally attributed to a variety of different cellular activities, including: ubiquitin/sumoylation cycles, microtubular transport and motor activities, cell division and the cell cycle, cell motility, protein phosphorylation/signaling, endocytosis, and apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号