共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA damage response (DDR) is vital for genomic stability, and its deficiency is linked to tumorigenesis. Extensive studies in interphase (G(1)-S-G(2)) mammalian cells have revealed the mechanisms of DDR in great detail; however, how mitotic cells respond to DNA damage remains less defined. We report here that a full DDR is suppressed in mitotic mammalian cells until telophase/cytokinesis. Although early DDR markers such as the phosphorylations of ataxia telangiectasia mutated (ATM) and histone H2A.x (H2AX) can be readily detected, the ionizing radiation-induced foci (IRIF) formation of late DDR markers such as breast cancer type 1 susceptibility protein (BRCA1) and p53-binding protein 1 (53BP1) are absent until the telophase/cytokinesis stage. We further showed that the IR-induced ubiquitination cascade around DNA damage sites did not occur in mitotic cells, which explains, at least in part, why BRCA1 and 53BP1 cannot be recruited to the damaged sites. These observations indicate that DDR is suppressed in mitotic cells after the step of γH2AX formation. Not surprisingly, we found that the absence of a full DDR in mitotic cells was associated with the high cyclin-dependent kinase 1 (CDK1) activities. More 53BP1 IRIF could be detected when the irradiated mitotic cells were treated with a CDK1 inhibitor. Further, the activation of CDK5 in interphase cells impedes the formation of 53BP1 IRIF. Together, these results suggest that the DDR is suppressed by the high CDK1 activity in mitotic mammalian cells. 相似文献
3.
B E Symington 《The Journal of biological chemistry》1992,267(36):25744-25747
The high affinity fibronectin receptor (FNR) is expressed by hematopoietic cells, fibroblasts, and proliferating epidermal cells. Expression of this integrin is altered by chemical and viral transformation, suggesting that FNR dysfunction may play a role in growth control. This study demonstrates that exposing FA-K562 cells to glycine-arginine-glycine-aspartate-serine (GRGDS), a peptide ligand of the FNR, specifically stimulates p34/cdc2- and cyclin A-associated kinase activities. This occurs within 2 h of peptide addition. The 110-kDa form of the retinoblastoma protein appears within 3 h of GRGDS addition, consistent with activation of a G1/S kinase. DNA staining profiles demonstrate that GRGDS induces cell cycle progression within 24 h. Increased anchorage-independent growth is subsequently observed in GRGDS-treated FA-K562 cells. The control peptide, GRGES, which cannot bind the FNR, has none of these effects. This demonstrates that an extracellular integrin ligand can regulate cell proliferation. Furthermore, these results suggest that integrins link the extracellular environment and intracellular growth regulators. 相似文献
4.
Malumbres M Sotillo R Santamaría D Galán J Cerezo A Ortega S Dubus P Barbacid M 《Cell》2004,118(4):493-504
Cdk4 and Cdk6 are thought to be essential for initiation of the cell cycle in response to mitogenic stimuli. Previous studies have shown that Cdk4 is dispensable for proliferation in most cell types, an observation attributed to a putative compensatory role by Cdk6. Cdk6-null mice are viable and develop normally although hematopoiesis is slightly impaired. Embryos defective for Cdk4 and Cdk6 die during the late stages of embryonic development due to severe anemia. However, these embryos display normal organogenesis and most cell types proliferate normally. In vitro, embryonic fibroblasts lacking Cdk4 and Cdk6 proliferate and become immortal upon serial passage. Moreover, quiescent Cdk4/Cdk6-null cells respond to serum stimulation and enter S phase with normal kinetics although with lower efficiency. These results indicate that D-type cyclin-dependent kinases are not essential for cell cycle entry and suggest the existence of alternative mechanisms to initiate cell proliferation upon mitogenic stimulation. 相似文献
5.
6.
Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells 总被引:7,自引:3,他引:7 下载免费PDF全文
《The Journal of cell biology》1995,131(1):227-234
Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation. 相似文献
7.
Regulation of cyclin-dependent kinase 2 activity by ceramide 总被引:5,自引:0,他引:5
Cyclin-dependent kinases have been implicated in the inactivation of retinoblastoma (Rb) protein and cell cycle progression. Recent studies have demonstrated that the lipid molecule ceramide is able to induce Rb hypophosphorylation leading to growth arrest and cellular senescence. In this study, we examined the underlying mechanisms of Rb hypophosphorylation and cell cycle progression utilizing the antiproliferative molecule ceramide. C6-Ceramide induced a G0/G1 arrest of the cell cycle in WI38 human diploid fibroblasts. Employing immunoprecipitation kinase assays, we found that ceramide specifically inhibited cyclin-dependent kinase CDK2, with a mild effect on CDC2 and significantly less effect on CDK4. The effect of ceramide was specific such that C6-dihydroceramide was not effective. Ceramide did not directly inhibit CDK2 in vitro but caused activation of p21, a major class of CDK-inhibitory proteins, and led to a greater association of p21 to CDK2. Using purified protein phosphatases, we showed that ceramide activated both protein phosphatase 1 and protein phosphatase 2A activities specific for CDK2 in vitro. Further, calyculin A and okadaic acid, both potent protein phosphatase inhibitors, together almost completely reversed the effects of ceramide on CDK2 inhibition. Taken together, these results demonstrate a dual mechanism by which ceramide inhibits the cell cycle. Ceramide causes an increase in p21 association with CDK2 and through activation of protein phosphatases selectively regulates CDK2. These events may lead to activation of Rb protein and subsequent cell cycle arrest. 相似文献
8.
Liao CB Chang YC Kao CW Taniga ES Li H Tzang BS Liu YC 《Journal of cellular biochemistry》2006,97(4):824-835
Progression through the cell cycle relies on the activities of cyclin-dependent kinases (Cdk), which in turn are modulated by inhibitory proteins such as p21(waf1/cip1) that are induced when genomic damage occurs. In this study, we show that exposure of normal mammalian cells, such as NIH3T3 fibroblasts, to UVC (25 J/m2, at 254 nm) induces the expression of p21 without causing significant apoptosis, whereas similar treatment of Chinese hamster ovary (CHO-K1) cells with UVC causes apoptosis without inducing p21. The absence of p21 in UV-irradiated CHO-K1 cells is accompanied by the deregulation of Cdk2 activity. The elevation of Cdk2 activity correlates with the increase of UV-induced apoptosis, which can be suppressed by small-molecule Cdk2 inhibitors such as roscovitine and pyrrolidine dithiocarbamate. The results of this study suggest that the deregulation of Cdk2 activity may be critical to UV-induced apoptosis in CHO-K1 cells. 相似文献
9.
10.
Graded mitogen-activated protein kinase activity precedes switch-like c-Fos induction in mammalian cells 下载免费PDF全文
The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such switch-like behavior is widely discussed in the literature, it is not known whether the MAPK pathway in mammalian cells exhibits a switch-like or graded response. For this study, we used flow cytometry and immunofluorescence to generate single-cell measurements of MAPK signaling in Swiss 3T3 fibroblasts. In contrast to the case in Xenopus oocytes, we found that ERK activation in individual mammalian cells is not ultrasensitive and shows a graded response to changes in agonist concentration. Thus, the conserved MAPK signaling module exhibits different systems-level properties in different cellular contexts. Furthermore, the graded ERK response was converted into a more switch-like behavior at the level of immediate-early gene induction and cell cycle progression. Thus, while MAPK signaling is involved in all-or-nothing cell fate decisions for both Xenopus oocyte maturation and mammalian fibroblast proliferation, the underlying mechanisms responsible for the switch-like nature of the cellular responses are different in these two systems, with the mechanism appearing to lie downstream of the kinase cascade in mammalian fibroblasts. 相似文献
11.
12.
Park CS Lee MS Oh HJ Choi KY Yeo MG Chun JS Song WK 《European journal of cell biology》2007,86(2):111-123
Beta-catenin is implicated in quite different cellular processes, which require a fine-tuned regulation of its function. Here we demonstrate that cyclin-dependent kinase 6 (CDK6), in association with cyclin D1 (CCND1), directly binds to beta-catenin. We showed that CCND1-CDK6 phosphorylates beta-catenin on serine 45 (S45). This phosphorylation creates a priming site for glycogen synthase kinase 3beta (GSK3beta) and is both necessary and sufficient to initiate the beta-catenin phosphorylation-degradation cascade. Moreover, co-immunoprecipitation assays using Wnt3a-conditioned medium reveals that while Wnt stimulation leads to the dissociation of beta-catenin from axin and casein kinase Ialpha (CKIalpha), Wnt treatment promotes an increase in CCND1 level and the association of beta-catenin with CCND1-CDK6. Furthermore, Wnt3a-stimulated cytosolic beta-catenin levels were higher in CDK6 knockout mouse embryonic fibroblasts (CDK6-/- MEFs) compared to wild-type MEFs. Thus, the CCND1-CDK6 complex is like to negatively regulate Wnt signaling by mediating beta-catenin phosphorylation and its subsequent degradation in Wnt-stimulated cells. 相似文献
13.
14.
Varicella-zoster virus infection of human foreskin fibroblast cells results in atypical cyclin expression and cyclin-dependent kinase activity 下载免费PDF全文
In its course of human infection, varicella-zoster virus (VZV) infects rarely dividing cells such as dermal fibroblasts, differentiated keratinocytes, mature T cells, and neurons, none of which are actively synthesizing DNA; however, VZV is able to productively infect them and use their machinery to replicate the viral genome. We hypothesized that VZV alters the intracellular environment to favor viral replication by dysregulating cell cycle proteins and kinases. Cyclin-dependent kinases (CDKs) and cyclins displayed a highly unusual profile in VZV-infected confluent fibroblasts: total amounts of CDK1, CDK2, cyclin B1, cyclin D3, and cyclin A protein increased, and kinase activities of CDK2, CDK4, and cyclin B1 were strongly and simultaneously induced. Cyclins B1 and D3 increased as early as 24 h after infection, concurrent with VZV protein synthesis. Confocal microscopy indicated that cyclin D3 overexpression was limited to areas of IE62 production, whereas cyclin B1 expression was irregular across the VZV plaque. Downstream substrates of CDKs, including pRb, p107, and GM130, did not show phosphorylation by immunoblotting, and p21 and p27 protein levels were increased following infection. Finally, although the complement of cyclin expression and high CDK activity indicated a progression through the S and G(2) phases of the cell cycle, DNA staining and flow cytometry indicated a possible G(1)/S blockade in infected cells. These data support earlier studies showing that pharmacological CDK inhibitors can inhibit VZV replication in cultured cells. 相似文献
15.
16.
17.
18.
Cyclin-dependent kinase (Cdk)5 is a proline-directed Ser/Thr protein kinase that functions mainly in neurons and is activated by binding to a regulatory subunit, p35 or p39. Kinase activity is mainly determined by the amount of p35 available, which is controlled by a balance between synthesis and degradation. Kinase activity is also regulated by Cdk5 phosphorylation, but the activity of phosphorylated Cdk5 is in contrast to that of cycling Cdks. Cdk5 is a versatile protein kinase that regulates multiple neuronal activities including neuronal migration and synaptic signaling. Further, Cdk5 plays a role in both survival and death of neurons. Long-term inactivation of Cdk5 triggers cell death, and the survival activity of Cdk5 is apparent when neurons suffer from stress. In contrast, hyper-activation of Cdk5 by p25 promotes cell death, probably by reactivating cell-cycle machinery in the nucleus. The pro-death activity is suppressed by membrane association of Cdk5 via myristoylation of p35. Appropriate activity, localization, and regulation of Cdk5 may be critical for long-term survival of neurons, which is more than 80 years in the case of humans. 相似文献
19.
Inhibition of G1 cyclin-dependent kinase activity during growth arrest of human breast carcinoma cells by prostaglandin A2. 总被引:3,自引:2,他引:3 下载免费PDF全文
Prostaglandin A2 (PGA2) potently inhibits cell proliferation and suppresses tumor growth in vivo, but little is known regarding the molecular mechanisms mediating these effects. Here we demonstrate that treatment of breast carcinoma MCF-7 cells with PGA2 leads to G1 arrest associated with a dramatic decrease in the levels of cyclin D1 and cyclin-dependent kinase 4 (cdk4) and accompanied by an increase in the expression of p21. We further show that these effects occur independent of cellular p53 status. The decline in cyclin D and cdk4 protein levels is correlated with loss in cdk4 kinase activity, cdk2 activity is also significantly inhibited in PGA2-treated cells, an effect closely associated with the upregulation of p21. Immunoprecipitation experiments verified that p21 was indeed complexed with cdk2 in PGA2-treated cells. Additional experiments with synchronized MCF-7 cultures stimulated with serum revealed that treatment with PGA2 prevents the progression of cells from G1 to S. Accordingly, the kinase activity associated with cdk4, cyclin E, and cdk2 immunocomplexes, which normally increases following serum addition, was unchanged in PGA2-treated cells. Furthermore, the retinoblastoma protein (Rb), a substrate of cdk4 and cdk2 whose phosphorylation is necessary for cell cycle progression, remains underphosphorylated in PGA2-treated serum-stimulated cells. These findings indicate that PGA2 exerts its growth-inhibitory effects through modulation of the expression and/or activity of several key G1 regulatory proteins. Our results highlight the chemotherapeutic potential of PGA2, particularly for suppressing growth of tumors lacking p53 function. 相似文献
20.
A Verdanis 《The Journal of biological chemistry》1977,252(3):807-813
This paper reports on the discovery of a protein kinase activity associated with the inner membrane of mammalian mitochondria. The enzyme does not respond to addition of cyclic AMP or cyclic GMP and has a preference for whole histone as phosphate acceptor. Some standard assay systems for the cyclic nucleotide-dependent cytosol protein kinases would be unable to pick up this activity of the orthophosphate concentration is higher than 25 mM and the pH or the assay lower than pH 6.5. The enzyme described here has an apparent pH optimum of 8.5. Activity in liver mitochondria is not evident unless the mitochondria are disrupted by either sonication or freezing and thawing. Distribution of kinase activity in centrifugal fractions of both liver and heart mitochondrial sonicates was parallel to that of the two inner membrane marker enzymes succinic dehydrogenase and cytochrome oxidase and quite different from that of the matrix enzyme malic dehydrogenase. Experiments with preparations enriched in outer or inner membranes confirmed the contention that this enzyme is located on the inner membrane. Since disruption of the inner membrane by a freeze-thaw treatment (after the outer membrane had been disrupted by swelling in phosphate) was necessary for full expression of activity by this enzyme, the tentative conclusion was reached that substrate is accepted only from the matrix side of the inner membrane. 相似文献