首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the isolation of single plant cells from Taxus suspension cultures has been developed for the analysis of single cells via rapid throughput techniques such as flow cytometry. Several cell wall specific enzymes, such as pectinase, pectolyase Y-23, macerozyme, Driselase(R), and cellulase were tested for efficacy in producing single cell suspensions. The method was optimized for single cell yield, viability, time, and representivity of aggregated cell cultures. The best combination for single cell isolation was found to be 0.5% (w/v) pectolyase Y-23 and 0.04% (w/v) cellulase. High viability (>95%) and high yields of single cell aggregates (>90%) were obtained following 4 hours of digestion for four separate Taxus cell lines. In addition, methyl jasmonate elicitation (200 microM) was found to have no effect on three of the four tested Taxus lines. Isolated single cells were statistically similar to untreated cell cultures for peroxidase activity (model cell wall protein) and paclitaxel content (secondary metabolite produced in Taxus cell cultures). In comparison, protoplasts showed marked changes in both peroxidase activity and paclitaxel content as compared to untreated cultures. The use of flow cytometry was demonstrated with isolated cells that were found to have > 99% viability upon staining with fluorescein diacetate. The development of a method for the isolation of single plant cells will allow the study of population dynamics and culture variability on a single cell level for the development of population models of plant cell cultures and secondary metabolism.  相似文献   

2.
Technologies that rapidly isolate viable single cells from heterogeneous solutions have significantly contributed to the field of medical genomics. Challenges remain both to enable efficient extraction, isolation and patterning of single cells from heterogeneous solutions as well as to keep them alive during the process due to a limited degree of control over single cell manipulation. Here, we present a microdroplet based method to isolate and pattern single cells from heterogeneous cell suspensions (10% target cell mixture), preserve viability of the extracted cells (97.0±0.8%), and obtain genomic information from isolated cells compared to the non-patterned controls. The cell encapsulation process is both experimentally and theoretically analyzed. Using the isolated cells, we identified 11 stem cell markers among 1000 genes and compare to the controls. This automated platform enabling high-throughput cell manipulation for subsequent genomic analysis employs fewer handling steps compared to existing methods.  相似文献   

3.
Plant suspension cultures are highly aggregated, preventing the direct application of flow cytometry for the study of population dynamics. The utility of single cells to accurately represent aggregated suspension cultures was tested through the analysis of total protein content. Specifically, protein content of two Taxus cuspidata suspension culture lines was studied using the Bradford assay for aggregated suspension cultures, and flow cytometry with fluorescein isothiocyanate staining for protoplasts and single cells. Taxus protein levels were measured at 75–160 mg per gram dry weight via the Bradford assay. Aggregated suspension cultures, protoplasts, and single cells predicted the same trend of protein content over the culture period (21 days). Normalized protein content of isolated single cells was statistically equivalent to aggregated suspensions for both cell lines. However, normalized protein content of isolated protoplasts showed significant differences from aggregated suspensions for one of the two cell lines. Elicitation with methyl jasmonate (MJ) is commonly utilized to increase paclitaxel accumulation in suspension cultures, and therefore the effect of MJ elicitation on protein content in aggregated suspensions, isolated single cells and protoplasts was assessed. Aggregated suspension cultures, protoplasts, and single cells did not show any change in total protein content following elicitation with MJ at 200 M on day 7. This study illustrates the usefulness of flow cytometry for obtaining culture population information and the value of using intact single cells for the study of plant metabolism.  相似文献   

4.
Single cells isolated from aggregated Taxus cuspidata cultures via enzymatic digestion were grown in suspension culture. High seeding density (4×105 cells/ml) and the addition of cell-free conditioned medium were essential for growth. Doubling the concentration of the nutrients [ascorbic acid (150 g/l), glutamine (6.25 mm), and citric acid (150 g/l)] had no effect on single cell growth or viability. A specific growth rate of 0.11 days−1 was achieved, which is similar to the observed growth rate of aggregated Taxus suspensions. The biocide, Plant Preservative Mixture, added at 0.2% (v/v) to all single cell cultures to prevent microbial contamination, had no significant effect on growth or viability. Following cell sorting, single cell cultures can be used to establish new cell lines for biotechnology applications or provide cells for further study.  相似文献   

5.
We developed a new method for isolating viable type II cells from fractionated and unfractionated lung cell suspensions by flow cytometry using acridine orange (AO). Fischer-344 rat lungs were dispersed into single-cell suspensions by a technique that yields a high number of cells (4-5 X 10(8) cells/lung, congruent to 85% viable), congruent to 11% of which are type II cells. Elutriated fractions from the lung cell preparation and parent, unfractionated cell suspensions were incubated with 1.0-0.02 micrograms/ml AO and analyzed by flow cytometry. Parameters analyzed included axial light loss (ALL) and red fluorescence (RF). Based on their unique RF, attributable to AO staining of type II cell lamellar bodies, and their ALL characteristics, type II pneumocytes were sorted from elutriated fractions to greater than 95% purity. Using the same approach, type II pneumocytes were sorted from unfractionated lung cell suspensions at greater than or equal to 85% purity. The viabilities of the type II alveolar epithelial cells isolated by this method range from 85% to 95%, and the ultrastructural features of the sorted cells were unaltered by AO labeling or sorting.  相似文献   

6.
A technique is described for the establishment, maintenance, and regeneration of plants from cell suspension cultures ofArabidopsis thaliana (L) Heynh. Friable, rapidly growing cell suspension cultures were initiated from leaf or hypocotyl callus cultures and these have been maintained in liquid culture for 24 months. The cells grown in liquid culture were used to study the effects of growth regulators, medium salts composition, culture temperature, sucrose concentration and medium solidifying agents on morphogenesis. The most important parameters for plant regeneration were culture temperatures lower than 25°C, the medium solidification agent gelrite at 0.2% (w/v) and zeatin or thidiazuron as the choice of cytokinin. These cell suspensions continue to regenerate fertile plants with a total of over 200 plants having been rooted to date and they also serve as convenient sources of cells for protoplast isolation, biochemical, and molecular assays.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - IAA indoleacetic acid - BAP 6-benzylaminopurine  相似文献   

7.
Tang  K.  Sun  X.  An  D.  Power  J.B.  Cocking  E.C.  Davey  M.R. 《Plant Cell, Tissue and Organ Culture》2000,60(1):79-82
A reproducible plant regeneration system has been developed for protoplasts from embryogenic cell suspension cultures of the commercial Asian long-grain javanica rice, Oryza sativa cv. Azucena. Protoplasts were isolated routinely from cell suspensions with yields of 5.5–12.0 × 106 g-1 fresh weight. A membrane filter nurse-culture method was adopted and was essential to support sustained mitotic division of protoplast-derived cells, leading to cell colony formation. The protoplast plating efficiency was higher when suspension cells of Lolium multiflorum, rather than those of the japonica rice O. sativa L. cv. Taipei 309, were employed as nurse cells. A two-step shoot regeneration procedure, in which protoplast-derived calli were cultured initially on medium semi-solidified with 1% (w/v) agarose followed by culture on medium containing 0.4% (w/v) agarose, induced plant regeneration from protoplast-derived calli. Fifteen percent of protoplast-derived tissues regenerated shoots; tissues not subjected to this treatment failed to develop shoots.  相似文献   

8.
A comprehensive genomic analysis of single cells is instrumental for numerous applications in tumor genetics, clinical diagnostics and forensic analyses. Here, we provide a protocol for single-cell isolation and whole genome amplification, which includes the following stages: preparation of single-cell suspensions from blood or bone marrow samples and cancer cell lines; their characterization on the basis of morphology, interphase fluorescent in situ hybridization pattern and antibody staining; isolation of single cells by either laser microdissection or micromanipulation; and unbiased amplification of single-cell genomes by either linker-adaptor PCR or GenomePlex library technology. This protocol provides a suitable template to screen for chromosomal copy number changes by conventional comparative genomic hybridization (CGH) or array CGH. Expected results include the generation of several micrograms of DNA from single cells, which can be used for CGH or other analyses, such as sequencing. Using linker-adaptor PCR or GenomePlex library technology, the protocol takes 72 or 30 h, respectively.  相似文献   

9.
犬肾细胞MDCK无血清贴壁及单细胞悬浮培养   总被引:1,自引:0,他引:1  
旨在挖掘用于鉴定金黄色葡萄球菌的高特异性靶点及其PCR检测引物。采用C++语言编程,以金黄色葡萄球菌Staphylococcus aureus MRSA 252基因组编码序列为对象,对2 656个可编码区进行分析,获得特异性靶点序列,并设计PCR扩增引物。对包括葡萄球菌属11个种及其他细菌属在内的共计137株细菌验证引物特异性,筛选获得9个DNA序列,并设计了4对引物。经验证2对引物的特异性较好,其中引物SA3的基因组DNA检测限为13.7 fg/μL,菌体检测限为9.25×102 CFU/mL。结果验证  相似文献   

10.
近年来,因病毒侵害人类每年都要蒙受巨大的经济损失和社会损失。犬肾细胞MDCK以其具有的培养容易、增殖快、流感病毒感染效率高等特点,成为适用于流感病毒疫苗生产的重要细胞系之一。以MDCK细胞为研究对象,在自制无血清培养基中成功实现了MDCK细胞从有血清培养到无血清培养的驯化;并通过单细胞悬浮培养驯化过程实现了MDCK细胞的无血清单细胞悬浮培养,获得了适于无血清单细胞悬浮生长的ssf-MDCK细胞株,无血清单细胞悬浮批培养最大活细胞密度可达3.81×106 cells/mL,最大比生长速率可达0.056 h?  相似文献   

11.
Summary Stationary culture of plant cell suspensions has been achieved. Slurries, produced when small amounts of agar (0.1–0.4%) were added to culture media, were used to suspend plant cells. Growth proceeded more slowly than in standard shake culture, but cells remained viable for months of culture. This method of growing plant cells in stationary culture should be useful for general applications including long-term cell culture, shipment of cultures, and physiological, molecular biological, and pathological studies. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable. Editor’s Statement This procedure for growing stationary suspension cultures in an agar slurry should be useful for shipping suspensions and for long-term maintenance of little used or back-up cultures.  相似文献   

12.
Single-cell experiments represent the next frontier for biochemical and gene expression research. Although bulk-scale methods averaging populations of cells have been traditionally used to investigate cellular behavior, they mask individual cell features and can lead to misleading or insufficient biological results. We report on a single-cell electroporation microarray enabling the transfection of pre-selected individual cells at different sites within the same culture (space-resolved), at arbitrarily chosen time points and even sequentially to the same cells (time-resolved). Delivery of impermeant molecules by single-cell electroporation was first proven to be finely tunable by acting on the electroporation protocol and then optimized for transfection of nucleic acids into Chinese Hamster Ovary (CHO-K1) cells. We focused on DNA oligonucleotides (ODNs), short interfering RNAs (siRNAs), and DNA plasmid vectors, thus providing a versatile and easy-to-use platform for time-resolved gene expression experiments in single mammalian cells.  相似文献   

13.
This paper reports the first successful isolation and cell wall regeneration of Gracilaria gracilis (Stackhouse) Steentoft, Irvine et Farnham protoplasts. These results form an important foundation for the development of a successful tissue culture system for G. gracilis. Initially, an isolation protocol was optimized by investigation of the effects of the enzyme constituents and concentrations, the pre-treatment of thalli, the incubation period and temperature, and the pH of the enzymatic medium on protoplast yields. A pre-treatment of G. gracilis thalli with 1 % (w/v) papain for 30 min followed by a 3-h enzymatic digestion of thalli with an enzymatic mixture containing 2 % (w/v) cellulase Onozuka R-10, 1 % (w/v) macerozyme R-10, and 10 U mL?1 agarase at pH 6.15 was found to produce the highest yield of protoplasts at 22 °C. Reliably high yields (20–30?×?105 protoplasts g?1 f.wt) of protoplasts could be obtained from G. gracilis thalli when this optimized protocol was used. Cell wall re-synthesis by G. gracilis protoplasts, which constitutes the first step towards whole plant regeneration, was followed using calcoflour staining and scanning electron microscopy. Protoplasts were shown to complete the initial stages of cell wall re-synthesis within the first 24 h of culturing.  相似文献   

14.
Zhang S  Banerjee D  Kuhn JR 《PloS one》2011,6(4):e19505
Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4) cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81%) of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology.  相似文献   

15.
A method was developed for rapid plant regeneration from protoplasts of birdsfoot trefoil (Lotus corniculatus L. cv. Leo). Green cotyledons from in vitro grown seedlings were preplasmolyzed in CPW salts containing 13% mannitol (CPW 13 M) for 1 h prior to the enzyme treatment. The enzyme formula consisted of 2% (w/v) Onozuka Cellulase R-10, 1% (w/v) Macerase and 0.1% (w/v) Pectolyase Y-23 in CPW 13 M. This method produced high yields of viable protoplasts after purification. The procedure is reproducible and takes approximately 2.5 months from protoplast isolation to plantlet establishment in a greenhouse. More than 100 plantlets were grown in soil. Two somaclonal variants, a chimeric plant for chlorophyll production and an albino cell line, have been obtained by this procedure.  相似文献   

16.
Although transient gene expression using reporters such as green fluorescent protein is a versatile tool for examining gene functions and intracellular protein trafficking, the establishment of a highly efficient gene manipulation method remains a challenge in many plant species. A reliable transformation protocol has not yet been established for the three single-cell C4 species, despite their potential of serving as model systems for their extraordinary C4 photosynthetic metabolism. We report the first protocol optimized for isolating a large-scale and homogenous population of protoplasts from chlorenchyma cells of the single-cell C4 species Bienertia sinuspersici. Cytochemical staining confirmed the preservation of the unusual subcellular compartmentation of organelles in chlorenchyma cells after cell wall digestion. Approximately 84% of isolated protoplasts expressed the reporter fluorescent protein following our optimized polyethylene glycol-mediated transfection procedures. Fluorescent fusion protein tagged with various intracellular sorting signals demonstrated potential use of the transient gene expression system in subcellular protein localization and organelle dynamics studies. Further applications of the current protoplast isolation and transfection techniques in understanding the novel single-cell C4 photosynthetic mechanism are discussed.  相似文献   

17.
The success of cell therapy is directly related to the viability of cells used for transplantation. The cells used for transplantation are in some cases injected in suspension. However, the optimal conditions for the preservation of cell viability upon the preparation and storage of cell suspensions for transplantation have not been defined yet. The aim of the present work consisted in the selection of optimal conditions for the storage of suspensions of human submandibular salivary gland cells, differentiated cells of the submandibular salivary gland, and dermal fibroblasts in biocompatible solutions. Standard procedures of cell isolation and cultivation were used in the study. An automatic cell counter from BioRad was used to count the cells, and viability of the cells was assessed using staining with 4% Trypan Blue. The biocompatible solutions tested included phosphate-buffered saline, physiological saline for injections, and a 2% solution of human albumin in phosphate-buffered saline. The study showed that the human cells under investigation remained viable in suspension at both +4°С and +25°С for at least 24 hours, regardless of the carrier solution used. The highest content of viable cells of the salivary gland (more than 50%) at both temperatures examined was observed when cells were suspended in phosphate-buffered saline. However, the adhesive and proliferative properties of the salivary gland cells were better preserved at +4°С in case of 24 hours of incubation under the conditions described above. Fibroblasts maintained in physiological saline formed a homogeneous single-cell suspension that remained stable for 30 hours at +4°С; virtually no loss of cell viability was observed. The addition of 2% albumin resulted in a decrease of the viability of fibroblasts. Thus, storage and transportation in phosphate- buffered saline at +4°С can be recommended for suspensions of cells of the human submandibular salivary gland, whereas human fibroblast suspensions should be maintained at +4°С in physiological saline.  相似文献   

18.
The biomass of sage (Salvia officinalis L.) cell suspension culture was composed of single cells and cell aggregates. The development of aggregated cell culture from a single-cell suspension was monitored by particle size distribution for four particle size classes. Particle size distribution was compared between the biomass grown in bioreactor and shake flasks. The size of the particles had a strong influence on content of secondary metabolite, ursolic acid (UA). The single cell biomass fraction accumulated up to 7.7 mg UA g–1 DW which was up to 50 times higher compared to aggregated biomass fractions.  相似文献   

19.
By means of a modified Langendorff perfusion technique using collagenase and elastase cell suspensions of viable myocytes from atria of adult guinea-pigs can be obtained. If the cell isolation is performed aseptically the myocytes can be kept in long term cell culture. Under these conditions the cells attach to the bottom of the culture dish within 12 to 24 h after plating. Thereafter they round up forming spherical 'cardioballs'. These cardioballs are highly suitable for electrophysiological experiments using different configurations (cell-attached and cell-free) of the patch-clamp technique. They can be employed for these experiments for up to 8 days after isolation. Thereafter they tend to flatten resembling embryonic heart cells in tissue culture.  相似文献   

20.
Nagata and Takebe's (NT) medium, supllementedte with 2.5 μm 2,4-dichlorphenoxyacetic acid (2,4-D), induced development of friable calluses from leaves of axenic shoot cultures of Alnus incana. Fast-growing cell suspensions were established in the same medium without agar. Suspensions gave high yields of viable protoplasts after an overnight incubation in an enzyme mixture consisting of 1% (w/v) Onozuka R-10, 0.5% (w/v) Rhozyme HP-150, 0.03% (w/v) Macerase, CPW salts, and 13% (w/v) mannitol (pH 5.8). Protoplasts cultured on K8p medium underwent cell wall regeneration within 24 h. The optimum protoplast-derived colony formation and growth was obtained on the NT medium supplemented, as was the K8p medium, with glucose as the osmoticum, growth regulators, coconut milk and casein hydrolysate. Compared with other culture techniques, the agarose bead technique of Shillito et al. (Plant Cell Reports, 2 (1983) 244) improved cell division and colony formation frequency. Protoplast-derived macrocalluses grew under the same conditions as those used for leaf calluses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号