首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Roark EA  Haldar K 《PloS one》2008,3(10):e3538
Salmonella is an intracellular bacterial pathogen that replicates within a membrane-bound vacuole in host cells. The major lysosomal membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are recruited to the Salmonella-containing vacuole as well as Salmonella- associated filaments (Sifs) that emerge from the vacuole. LAMP-1 is a dominant membrane marker for the vacuole and Sifs. Its colocalization with both is dependent on a major secreted bacterial virulence protein, SifA. Here, we show that SifA is required for the recruitment of LAMP-2 and can be used as a second independent marker for both the bacterial vacuolar membrane and Sifs. Further, RNAi studies revealed that in LAMP-1 depleted cells, the bacteria remain membrane bound as measured by their association with LAMP-2 protein. In contrast, LAMP-2 depletion increased the amount of LAMP-1 free bacteria. Together, the data suggests that despite its abundance, LAMP-1 is not essential, but LAMP-2 may be partially important for the Salmonella-containing vacuolar membrane.  相似文献   

2.
The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have shown that disassembly of rafts and caveolae through depletion of plasma membrane cholesterol mitigates mechanotransduction processes in endothelial cells. Because osteoblasts are subjected to fluid-mechanical forces, we hypothesize that cholesterol-rich plasma membrane microdomains also serve the mechanotransduction process in this cell type. Cultured human fetal osteoblasts were subjected to either sustained hydrostatic pressure or laminar shear stress using a pressure column or parallel-plate apparatus, respectively. We found that sustained hydrostatic pressure induced protein tyrosine phosphorylation, activation of extracellular signal-regulated kinase (ERK)1/2, and enhanced expression of c-fos in both time- and magnitude-dependent manners. Similar responses were observed in cells subjected to laminar shear stress. Both sustained hydrostatic pressure- and shear stress-induced signaling were significantly reduced in osteoblasts pre-exposed to either filipin or methyl--cyclodextrin. These mechanotransduction responses were restored on reconstitution of lipid rafts and caveolae, which suggests that cholesterol-rich plasma membrane microdomains participate in the mechanotransduction process in osteoblasts. In addition, mechanical force-induced phosphoproteins were localized within caveolin-containing membranes. These data support the concept that lipid rafts and caveolae serve a general function as cell surface mechanotransduction sites within the plasma membrane. lipid rafts; caveolae; extracellular signal-regulated kinase  相似文献   

3.
The effect of cholesterol depletion on the activity of phosphatidylinositol/phosphatidylinositol 4-phosphate and diacylglycerol kinases and polyphosphoinositide phosphodiesterase has been studied in isolated membranes of human normal and cholesterol-depleted erythrocytes. Polyphosphoinositide synthesis (phosphatidylinositol/phosphatidylinositol 4-phosphate kinase activities) were found to depend on the permeability and sidedness characteristics of the membrane vesicles, which could limit the accessibility of ATP for the enzymes. When measured under proper conditions, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate synthesis were decreased in cholesterol-depleted membranes as compared with control membranes. The same level of synthesis could be obtained in both membranes by the addition of phosphatidylinositol (and Triton X-100) or of phosphatidylinositol 4-phosphate. Phosphatidic acid synthesis (diacylglycerol kinase activity) was also decreased in cholesterol-depleted membranes as compared with control membranes when measured in the presence of Ca2+. Addition of diolein (and Triton X-100) caused a large increase in phosphatidic acid synthesis which reached approximately the same level in both membranes. This showed that the apparent inhibition of polyphosphoinositide and phosphatidic acid synthesis was not due to a loss or to an inactivation of the kinases. Ca2+-activated polyphosphoinositide phosphodiesterase promoted the hydrolysis of 65-70% of the polyphosphoinositides in control and of only 45-55% in cholesterol-depleted membranes without changing the Ca2+ concentration for half-maximum hydrolysis (1 microM). Upon addition of sodium oleate, the extent of polyphosphoinositide hydrolysis became identical in both membranes, indicating again that there was no loss nor inactivation of the polyphosphoinositide phosphodiesterase in the cholesterol-depleted membranes. Since the concentration of the polyphosphoinositides was not changed by cholesterol depletion [Giraud, M'Zali, Chailley & Mazet (1984) Biochim. Biophys. Acta 778, 191-200], the reduction in both their synthesis and degradation observed here could be attributed to a reorganization of the phosphoinositides in membrane domains where they were not accessible to the kinases and phosphodiesterase. The reduction in phosphatidic acid synthesis was likely caused by a reduction in the total amount of the substrate diacylglycerol in cholesterol-depleted membranes as already shown [Giraud, M'Zali, Chailley & Mazet (1984) Biochim. Biophys. Acta 778, 191-200].  相似文献   

4.
GLUT1 is the predominant glucose transporter in leukemia cells, and the modulation of glucose transport activity by cytokines, oncogenes or metabolic stresses is essential for their survival and proliferation. However, the molecular mechanisms allowing to control GLUT1 trafficking and degradation are still under debate. In this study we investigated whether plasma membrane cholesterol depletion plays a role in glucose transport activity in M07e cells, a human megakaryocytic leukemia line. To this purpose, the effect of cholesterol depletion by methyl-β-cyclodextrin (MBCD) on both GLUT1 activity and trafficking was compared to that of the cytokine Stem Cell Factor (SCF). Results show that, like SCF, MBCD led to an increased glucose transport rate and caused a subcellular redistribution of GLUT1, recruiting intracellular transporter molecules to the plasma membrane. Due to the role of caveolae/lipid rafts in GLUT1 stimulation in response to many stimuli, we have also investigated the GLUT1 distribution along the fractions obtained after non ionic detergent treatment and density gradient centrifugation, which was only slightly changed upon MBCD treatment. The data suggest that MBCD exerts its action via a cholesterol-dependent mechanism that ultimately results in augmented GLUT1 translocation. Moreover, cholesterol depletion triggers GLUT1 translocation without the involvement of c-kit signalling pathway, in fact MBCD effect does not involve Akt and PLCγ phosphorylation. These data, together with the observation that the combined MBCD/SCF cell treatment caused an additive effect on glucose uptake, suggest that the action of SCF and MBCD may proceed through two distinct mechanisms, the former following a signalling pathway, and the latter possibly involving a novel cholesterol dependent mechanism.  相似文献   

5.
6.
7.
Cholesterol-rich membrane microdomains (CRMMs) are specialized structures that have recently gained much attention in cell biology because of their involvement in cell signaling and trafficking. However, few investigations, particularly those addressing embryonic development, have succeeded in manipulating and observing CRMMs in living cells. In this study, we performed a detailed characterization of the CRMMs lipid composition during early frog development. Our data showed that disruption of CRMMs through methyl-β-cyclodextrin (MβCD) cholesterol depletion at the blastula stage did not affect Spemann's organizer gene expression and inductive properties, but impaired correct head development in frog and chick embryos by affecting the prechordal plate gene expression and cellular morphology. The MβCD anterior defect phenotype was recapitulated in head anlagen (HA) explant cultures. Culture of animal cap expressing Dkk1 combined with MβCD-HA generated a head containing eyes and cement gland. Together, these data show that during Xenopus blastula and gastrula stages, CRMMs have a very dynamic lipid composition and provide evidence that the secreted Wnt antagonist Dkk1 can partially rescue anterior structures in cholesterol-depleted head anlagen.  相似文献   

8.
9.
Interactions between GPI-anchored proteins and membrane lipids   总被引:9,自引:0,他引:9  
Proteins anchored in membranes by glycosylphosphatidylinositol (GPI) are widely distributed, but the function of this unusual anchor is a puzzle. Recent evidence shows that these proteins can associate with membrane lipids in special ways. One function of GPI anchorage may be to allow proteins to interact with specialized membrane domains.  相似文献   

10.
55% of the total membrane cholesterol could be removed from porcine, bovine and human erythrocytes by incubating the cells in suspensions of lecithin liposomes. Up to 30% depletion, membrane permeability remained unaltered; more extensive depletion induced a marked increase of the transfer rates of nonelectrolytes and of organic acids penetrating by nonionic diffusion. This biphasic response of permeability to cholesterol depletion, which has not been observed in artificial lipid membranes, may be related to the heterogeneity of the erythrocyte membrane lipids or to a pool of cholesterol not interacting with the phospholipids.  相似文献   

11.
Lehto MT  Sharom FJ 《Biochemistry》2002,41(26):8368-8376
GPI-anchored proteins are ubiquitous on the eukaryotic cell surface, where they are involved in a variety of functions ranging from adhesion to enzymatic catalysis. Indirect evidence suggests that the GPI anchor may hold the protein close to the plasma membrane; however, there is a lack of direct information on the proximity of the protein portion of GPI-anchored proteins to the bilayer surface. The present study uses fluorescence resonance energy transfer (FRET) to address this important problem. The GPI-anchored ectoenzyme placental alkaline phosphatase (PLAP) was purified from a plasma membrane extract of human placental microsomes without the use of butanol. The protein was fluorescently labeled at the N-terminus with 7-(dimethylamino)coumarin-4-acetic acid succinimidyl ester (DMACA-SE) or Oregon Green 488 succinimidyl ester (OG488-SE), and each was reconstituted by detergent dilution into defined lipid bilayer vesicles containing an increasing mole fraction of a fluorescent lipid probe. The fluorescence of the labeled PLAP donors was quenched in a concentration-dependent manner by the lipid acceptors. The energy transfer data were analyzed using an approach that describes FRET between a uniform distribution of donors and acceptors in an infinite plane. The distance of closest approach between the protein moiety of PLAP and the lipid-water interfacial region of the bilayer was estimated to be smaller than 10-14 A. This indicates that the protein portion of PLAP is located very close to the lipid bilayer, possibly resting on the surface. This contact may allow transmission of structural changes from the membrane surface to the protein, which could influence the behavior and catalytic properties of GPI-anchored proteins.  相似文献   

12.
13.
Multidrug resistance P-glycoprotein (Pgp) has been reported to localize in low-density, cholesterol-enriched membranes. However, effects of low-density membrane domains on function of Pgp remain unexplored in whole cell systems. In cells that express modest levels of the protein endogenously or through drug selection, Pgp predominantly localized to low-density membranes following separation on a sucrose gradient. When highly overexpressed in NIH 3T3 cells, a prominent amount of Pgp also was detected in high-density membranes. Removing cholesterol from cells with beta-methylcyclodextrin (CD), a sterol acceptor molecule, shifted fractions that contained Pgp from low toward high density, and this effect was reversed to a similar extent by restoring sterols with either cholesterol or enantiomeric cholesterol. However, function of human MDR1 Pgp as probed with Tc-Sestamibi, a transport substrate for Pgp, was not dependent on localization of Pgp in cholesterol-enriched membranes. Specific inhibition of MDR1 Pgp with GF120918 or LY335979 also was independent of cholesterol. Cell-type-specific effects of cholesterol content on function of human Pgp were detected by use of daunomycin, another substrate for Pgp, although efficacy of inhibitors remained independent of cholesterol. Conversely, both function and inhibition of hamster Pgp as measured with Tc-Sestamibi and daunomycin were in part dependent on normal cell content of cholesterol. These data show that Pgp preferentially localizes to low-density, cholesterol-enriched membrane domains, but acute depletion of cholesterol impacts Pgp-mediated drug transport in a substrate- and cell-type-specific manner.  相似文献   

14.
Lipid analogs with dialkylindocarbocyanine (DiI) head groups and short or unsaturated hydrocarbon chains (e.g. DiIC(12) and FAST DiI) enter the endocytic recycling compartment efficiently, whereas lipid analogs with long, saturated tails (e.g. DiIC(16) and DiIC(18)) are sorted out of this pathway and targeted to the late endosomes/lysosomes (Mukherjee, S., Soe, T. T., and Maxfield, F. R. (1999) J. Cell Biol. 144, 1271-1284). This differential trafficking of lipid analogs with the same polar head group was interpreted to result from differential partitioning to different types of domains with varying membrane order and/or curvature. Here we investigate the system further by monitoring the trafficking behavior of these lipid analogs under conditions that alter domain properties. There was a marked effect of cholesterol depletion on the cell-surface distribution and degree of internalization of the lipid probes. Furthermore, instead of going to the late endosomes/lysosomes as in control cells, long chain DiI analogs, such as DiIC(16), were sorted to the recycling pathway in cholesterol-depleted cells. We confirmed that this difference was due to a change in overall membrane properties, and not cholesterol levels per se, by utilizing a Chinese hamster ovary cell line that overexpressed transfected stearoyl-CoA desaturase 1, a rate-limiting enzyme in the production of monounsaturated fatty acids. These cells have a decrease in membrane order because they contain a much larger fraction of unsaturated fatty acids. These cells showed alteration of DiI trafficking very similar to cholesterol-depleted cells. By using cold Triton X-100 extractability of different lipids as a criterion to determine the membrane properties of intracellular organelles, we found that the endocytic recycling compartment has abundant detergent-resistant membranes, in contrast to the late endosomes and lysosomes.  相似文献   

15.
Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2.  相似文献   

16.
Intracellular, pathogenic Salmonella typhimurium avoids phago-lysosome fusion, and exists within a unique vacuolar niche that resembles a late endosome. This model has emerged from studying the trafficking of host proteins to the Salmonella-containing vacuole (SCV). Very little is known about the role of major host lipids during infection. Here, we show using biochemical analyses as well as fluorescence microscopy, that intracellular infection perturbs the host sterol biosynthetic pathway and induces cholesterol accumulation in the SCV. Cholesterol accumulation is seen in both macrophages and epithelial cells: at the terminal stages of infection, as much as 30% of the total cellular cholesterol resides in the SCV. We find that accumulation of cholesterol in the SCV is linked to intracellular bacterial replication and may be dependent on Salmonella pathogenicity island 2 (SPI-2). Furthermore, the construction of a three-dimensional space-filling model yields novel insights into the structure of the SCV: bacteria embedded in cholesterol-rich membranes. Finally, we show that the glycosylphosphatidylinositol (GPI)-anchored protein CD55 is recruited to the SCV. These data suggest that, in contrast to prevailing models, the SCV accumulates components of cholesterol-rich early endocytic pathways during intracellular bacterial replication.  相似文献   

17.
The molar ratio of cholesterol to phospholipid (C/P) in human erythrocyte membrane is modified by incubating the cells with liposomes of various C/P ratios. The observed increase in cell surface area may be accounted for by the addition of cholesterol molecules. Fusion between liposomes and cells or attachment of liposomes to cells is not a significant factor in the alteration of C/P ratio. Onset temperatures for lipid phase separation in modified membranes are measured by electron diffraction. The onset temperature increases with decreasing C/P ration from 2 degrees C at C/P = 0.95 to 20 degrees C at C/P = 0.5. Redistribution of intramembrane particles is observed in membranes freeze-quenched from temperatures below the onset temperature. The heterogeneous distribution of intramembrane particles below the onset temperature suggests phase separation of lipid, with concomitant segregation of intramembrane protein into domains, even in the presence of an intact spectrin network.  相似文献   

18.
Acute cholesterol depletion is generally associated with decreased or abolished T cell signalling but it can also cause T cell activation. This anomaly has been addressed in Jurkat T cells using progressive cholesterol depletion with methyl-beta-cyclodextrin (MBCD). At depletion levels higher than 50% there is substantial cell death, which explains reports of signalling inhibition. At 10–20% depletion levels, tyrosine phosphorylation is increased, ERK is activated and there is a small increase in cytoplasmic Ca2+. Peripheral actin polymerisation is also triggered by limited cholesterol depletion. Strikingly, the lipid raft marker GM1 aggregates upon cholesterol depletion and these aggregated domains concentrate the signalling proteins Lck and LAT, whereas the opposite is true for the non lipid raft marker the transferrin receptor. Using PP2, an inhibitor of Src family kinase activation, it is demonstrated that the lipid raft aggregation occurs independently of and thus upstream of the signalling response. Upon cholesterol depletion there is an increase in overall plasma membrane order, indicative of more ordered domains forming at the expense of disordered domains. That cholesterol depletion and not unspecific effects of MBCD was behind the reported results was confirmed by performing all experiments with MBCD–cholesterol, when no net cholesterol extraction took place. We conclude that non-lethal cholesterol depletion causes the aggregation of lipid rafts which then induces T cell signalling.  相似文献   

19.
《The Journal of cell biology》1993,121(6):1291-1297
An Mr 63-kD sea urchin sperm flagellar membrane protein has been previously implicated as a possible receptor for egg jelly ligand(s) that trigger the sperm acrosome reaction (AR). The cDNA and deduced amino acid sequences of the 63-kD protein are presented. The open reading frame codes for a protein of 470 amino acids which contains a putative signal sequence of 25 residues. Western blots using antibodies to two synthetic peptides confirm the sequence to be that of the 63-kD protein. The mRNA is approximately 2,300 bases in length and the gene appears to be single copy. The protein is released from sperm membrane vesicles by treatment with phosphatidylinositol-specific phospholipase C, showing that it is anchored to the flagellar membrane by glycosylphosphatidyl inositol (GPI). Although we cannot demonstrate involvement of the 63-kD protein in the AR, it is of potential interest because it shares significant similarity with the developmentally expressed proteins crumbs, notch and xotch as well as human uromodulin over a region that includes two separate EGF repeats.  相似文献   

20.
Schizosaccharomyces pombe has four alpha-amylase homologs (Aah1p-Aah4p) with a glycosylphosphatidylinositol (GPI) modification site at the C-terminal end. Disruption mutants of aah genes were tested for mislocalization of vacuolar carboxypeptidase Y (CPY), and aah3Delta was found to secrete CPY. The conversion rate from pro- to mature CPY was greatly impaired in aah3Delta, and fluorescence microscopy inidicated that a sorting receptor for CPY, Vps10p, mislocalized to the vacuolar membrane. These results indicate that aah3Delta had a defect in the retrograde transport of Vps10p, and that Aah3p is the first S. pombe specific protein required for vacuolar protein sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号