首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.  相似文献   

2.
Vectorial Na(+) reabsorption across the proximal tubule is mediated by apical entry of Na(+), primarily via Na(+)/H(+) exchanger isoform 3 (NHE3), and basolateral extrusion via the Na(+) pump (Na(+)-K(+)-ATPase). We hypothesized that regulation of Na(+) reabsorption should involve not only the activity of the basolateral Na(+)-K(+)-ATPase, but also the apical NHE3, in a concerted manner. To generate a cell line that overexpresses Na(+)-K(+)-ATPase, opossum kidney (OK) cells were transfected with the rodent Na(+)-K(+)-ATPase alpha(1)-subunit (pCMV ouabain vector), and native cells were used as a control. The existence of distinct functional classes of Na(+)-K(+)-ATPase in wild-type and transfected cells was confirmed by the inhibition profile of Na(+)-K(+)-ATPase activity by ouabain. In contrast to wild-type cells, transfected cells exhibited two IC(50) values for ouabain: the first value was similar to the IC(50) of control cells, and the second value was 2 log units greater than the first, consistent with the presence of rat and opossum alpha(1)-isozymes. It is shown that transfection of OK cells with Na(+)-K(+)-ATPase increased Na(+)-K(+)-ATPase and NHE3 activities. This was associated with overexpression of the Na(+)-K(+)-ATPase alpha(1)-subunit and NHE3 in transfected OK cells. The abundance of the Na(+)-K(+)-ATPase beta(1)-subunit was slightly lower in transfected OK cells. In conclusion, the increase in expression and function of Na(+)-K(+)-ATPase in cells transfected with the rodent Na(+) pump alpha(1)-subunit cDNA is expected to stimulate apical Na(+) influx into the cells, thereby accounting for the observed stimulation of the apical NHE3 activity.  相似文献   

3.
Parathyroid hormone (PTH) inhibits Na(+),K(+)-ATPase activity through protein kinase C- (PKC) and extracellular signal-regulated kinase- (ERK) dependent pathways and increases serine phosphorylation of the alpha(1)-subunit. To determine whether specific serine phosphorylation sites within the Na(+),K(+)-ATPase alpha(1)-subunit are involved in the Na(+),K(+)-ATPase responses to PTH, we examined the effect of PTH in opossum kidney cells stably transfected with wild type rat Na(+),K(+)-ATPase alpha(1)-subunit (WT), serine 11 to alanine mutant alpha(1)-subunit (S11A), or serine 18 to alanine mutant alpha(1)-subunit (S18A). PTH increased phosphorylation and endocytosis of the Na(+),K(+)-ATPase alpha(1)-subunit into clathrin-coated vesicles in cells transfected with WT and S18A rat Na(+),K(+)-ATPase alpha(1)-subunits. PTH did not increase the level of phosphorylation or stimulate translocation of Na(+),K(+)-ATPase alpha(1)-subunits into clathrin-coated vesicles in cells transfected with the S11A mutant. PTH inhibited ouabain-sensitive (86)Rb uptake and Na(+),K(+)-ATPase activity (ouabain-sensitive ATP hydrolysis) in WT- and S18A-transfected opossum kidney cells but not in S11A-transfected cells. Pretreatment of the cells with the PKC inhibitors and ERK inhibitor blocked PTH inhibition of (86)Rb uptake, Na(+),K(+)-ATPase activity, alpha(1)-subunit phosphorylation, and endocytosis in WT and S18A cells. Consistent with the notion that ERK phosphorylates Na(+),K(+)-ATPase alpha(1)-subunit, ERK was shown to be capable of causing phosphorylation of Na(+),K(+)-ATPase alpha(1)-subunit immunoprecipitated from WT and S18A but not from S11A-transfected cells. These results suggest that PTH regulates Na(+),K(+)-ATPase by PKC and ERK-dependent alpha(1)-subunit phosphorylation and that the phosphorylation requires the expression of a serine at the 11 position of the Na(+),K(+)-ATPase alpha(1)-subunit.  相似文献   

4.
Extracellular signal-regulated protein kinases (ERKs) are important in many cellular functions. We and others have previously reported that prolonged exposure of gastric parietal cells to epidermal growth factor (EGF) enhanced gastric acid secretion stimulated by secretagogues via ERKs. In this study, we examined whether ERKs regulated H(+),K(+)-ATPase alpha-subunit gene expression using a gastric cancer cell line, AGS. EGF induced ERK activity time- and dose-dependently with a maximal effect observed at 10 min and 10 nM, respectively. The MEK inhibitors, U0126 and PD-98059, dose-dependently inhibited the ERK activity stimulated by EGF. To test H(+),K(+)-ATPase alpha-subunit gene expression, we transfected AGS cells with a plasmid containing a canine H(+),K(+)-ATPase alpha-subunit gene promoter fused to a luciferase reporter gene. EGF induced luciferase activity in transfected cells; this effect was inhibited by the MEK inhibitors, suggesting that EGF-induced gene expression involved the ERK pathway. When AGS cells were transfected with the reporter plasmids in conjunction with an expression vector encoding constitutively active MEK1, luciferase activity was strongly enhanced; this effect was attenuated by the MEK inhibitors or by an additional cotransfection of dominant negative MEK1. Taken together, our results led us to conclude that the ERK pathway may mediate H(+),K(+)-ATPase alpha-subunit gene expression, contributing to gastric acid secretion in parietal cells.  相似文献   

5.
Na(+),K(+)-ATPase is a heterodimer consisting of catalytic α1-α4 and regulatory β1-β3 subunits. Recently, we reported that transfection with ouabain-resistant α1R-Na(+),K(+)-ATPase rescues renal epithelial C7-MDCK cells exclusively expressing the ouabain-sensitive α1S-isoform from the cytotoxic action of ouabain. To explore the role of α2 subunit in ion transport and cytotoxic action of ouabain, we compared the effect of ouabain on K(+) ((86)Rb) influx and the survival of ouabain-treated C7-MDCK cells stably transfected with α1R- and α2R-Na(+),K(+)-ATPase. α2R mRNA in transfected cells was ~8-fold more abundant than α1R mRNA, whereas immunoreactive α2R protein content was 5-fold lower than endogenous α1S protein. A concentration of 10?μmol/L ouabain led to complete inhibition of (86)Rb influx both in mock- and α2R-transfected cells, whereas maximal inhibition of (86)Rb influx in α1R-transfectd cells was observed at 1000?μmol/L ouabain. In contrast to the massive death of mock- and α2R-transfected cells exposed to 3?μmol/L ouabain , α1R-cells survived after 24?h incubation with 1000?μmol/L ouabain. Thus, our results show that unlike α1R, the presence of α2R-Na(+),K(+)-ATPase subunit mRNA and immunoreactive protein does not contribute to Na(+)/K(+) pump activity, and does not rescue C7-MDCK cells from the cytotoxic action of ouabain. Our results also suggest that the lack of impact of transfected α2-Na(+),K(+)-ATPase on Na(+)/K(+) pump activity and cell survival can be attributed to the low efficiency of its translation and (or) delivery to the plasma membrane of renal epithelial cells.  相似文献   

6.
In renal epithelial cells endocytosis of Na(+),K(+)-ATPase molecules is initiated by phosphorylation of its alpha(1)-subunit, leading to activation of phosphoinositide 3-kinase and adaptor protein-2 (AP-2)/clathrin recruitment. The present study was performed to establish the identity of the AP-2 recognition domain(s) within the Na(+),K(+)-ATPase alpha(1)-subunit. We identified a conserved sequence (Y(537)LEL) within the alpha(1)-subunit that represents an AP-2 binding site. Binding of AP-2 to the Na(+),K(+)-ATPase alpha(1)-subunit in response to dopamine (DA) was increased in OK cells stably expressing the wild type rodent alpha-subunit (OK-WT), but not in cells expressing the Y537A mutant (OK-Y537A). DA treatment was associated with increased alpha(1)-subunit abundance in clathrin vesicles from OK-WT but not from OK-Y537A cells. In addition, this mutation also impaired the ability of DA to inhibit Na(+),K(+)-ATPase activity. Because phorbol esters increase Na(+),K(+)-ATPase activity in OK cells, and this effect was not affected by the Y537A mutation, the present results suggest that the identified motif is specifically required for DA-induced AP-2 binding and Na(+),K(+)-ATPase endocytosis.  相似文献   

7.
To determine the specificity and efficacy of [(3)H]ouabain binding as a quantitative measure of the Na(+) pump (Na(+), K(+)-ATPase) and as a marker for the localization of pumps involved in transepithelial Na(+)-transport, we analyzed the interaction of [(3)H]ouabain with its receptor in pig kidney epithelial (LLC-PK(1)) cells. When these epithelial cells are depleted of Na(+) and exposed to 2 muM [(3)H]ouabain in a Na(+)-free medium, binding is reduced by 90 percent. When depleted of K(+) and incubated in a K(+)- free medium, the ouabain binding rate is increase compared with that measured at 5 mM. This increase is only demonstable when Na(+) is present. The increased rate could be attributed to the predominance of the Na(+)-stimulated phosphorylated form of the pump, as K(+) is not readily available to stimulate dephosphorylation. However, some binding in the K(+)-free medium is attributable to pump turnover (and therefore, recycling of K(+)), because analysis of K(+)-washout kinetics demonstrated that addition of 2 muM ouabain to K(+)-depleted cells increased the rate of K(+) loss. These results indicate that in intact epithelial cells, unlike isolated membrane preparations, the most favorable condition for supporting ouabain binding occurs when the Na(+), K(+)-ATPase is operating in the Na(+)-pump mode or is phosphorylated in the presence of Na(+). When LLC-PK(1) cells were exposed to ouabain at 4 degrees C, binding was reduced by 97 percent. Upon rewarming, the rate of binding was greater than that obtained on cells kept at a constant 37 degrees C. However, even at this accelerated rate, the time to reach equilibrium was beyond what is required for cells, swollen by exposure to cold, to recover normal volume. Thus, results from studies that have attempted to use ouabain to eliminate the contribution of the conventional Na(+) pump to volume recovery must be reevaluated if the exposure to ouabain was done in the cold or under conditions in which the Na(+) pump is not operating.  相似文献   

8.
Renal sodium homeostasis is a major determinant of blood pressure and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular second messengers, either activate or inhibit proximal tubule Na(+),K(+)-ATPase. We have shown previously that phorbol ester (PMA) stimulation of endogenous PKC leads to activation of Na(+),K(+)-ATPase in cultured proximal tubule cells (OK cells) expressing the rodent Na(+), K(+)-ATPase alpha-subunit. We have now demonstrated that the treatment with PMA leads to an increased amount of Na(+),K(+)-ATPase molecules in the plasmalemma, which is proportional to the increased enzyme activity. Colchicine, dinitrophenol, and potassium cyanide prevented the PMA-dependent stimulation of activity without affecting the increased level of phosphorylation of the Na(+), K(+)-ATPase alpha-subunit. This suggests that phosphorylation does not directly stimulate Na(+),K(+)-ATPase activity; instead, phosphorylation may be the triggering mechanism for recruitment of Na(+),K(+)-ATPase molecules to the plasma membrane. Transfected cells expressing either an S11A or S18A mutant had the same basal Na(+),K(+)-ATPase activity as cells expressing the wild-type rodent alpha-subunit, but PMA stimulation of Na(+),K(+)-ATPase activity was completely abolished in either mutant. PMA treatment led to phosphorylation of the alpha-subunit by stimulation of PKC-beta, and the extent of this phosphorylation was greatly reduced in the S11A and S18A mutants. These results indicate that both Ser11 and Ser18 of the alpha-subunit are essential for PMA stimulation of Na(+), K(+)-ATPase activity, and that these amino acids are phosphorylated during this process. The results presented here support the hypothesis that PMA regulation of Na(+),K(+)-ATPase is the result of an increased number of Na(+),K(+)-ATPase molecules in the plasma membrane.  相似文献   

9.
The cardiotonic steroid, ouabain, a specific inhibitor of Na(+),K(+)-ATPase, initiates protein-protein interactions that lead to an increase in growth and proliferation in different cell types. We explored the effects of ouabain on glucose metabolism in human skeletal muscle cells (HSMC) and clarified the mechanisms of ouabain signal transduction. In HSMC, ouabain increased glycogen synthesis in a concentration-dependent manner reaching the maximum at 100 nM. The effect of ouabain was additive to the effect of insulin and was independent of phosphatidylinositol 3-kinase inhibitor LY294002 but was abolished in the presence of a MEK1/2 inhibitor (PD98059) or a Src inhibitor (PP2). Ouabain increased Src-dependent tyrosine phosphorylation of alpha(1)- and alpha(2)-subunits of Na(+),K(+)-ATPase and promoted interaction of alpha(1)- and alpha(2)-subunits with Src, as assessed by co-immunoprecipitation with Src. Phosphorylation of ERK1/2 and GSK3alpha/beta, as well as p90rsk activity, was increased in response to ouabain in HSMC, and these responses were prevented in the presence of PD98059 and PP2. Incubation of HSMC with 100 nM ouabain increased phosphorylation of the alpha-subunits of the Na-pump at a MAPK-specific Thr-Pro motif. Ouabain treatment decreased the surface abundance of alpha(2)-subunit, whereas abundance of the alpha(1)-subunit was unchanged. Marinobufagenin, an endogenous vertebrate bufadienolide cardiotonic steroid, increased glycogen synthesis in HSMC at 10 nM concentration, similarly to 100 nM ouabain. In conclusion, ouabain and marinobufagenin stimulate glycogen synthesis in skeletal muscle. This effect is mediated by activation of a Src-, ERK1/2-, p90rsk-, and GSK3-dependent signaling pathway.  相似文献   

10.
Clathrin-dependent endocytosis of Na(+),K(+)-ATPase in response to dopamine regulates its catalytic activity in intact cells. Because fission of clathrin-coated pits requires dynamin, we examined the mechanisms by which dopamine receptor signals promote dynamin-2 recruitment and assembly at the site of Na(+),K(+)-ATPase endocytosis. Western blotting revealed that dopamine increased the association of dynamin-2 with the plasma membrane and with phosphatidylinositol 3-kinase. Dopamine inhibited Na(+),K(+)-ATPase activity in OK cells and in those overexpressing wild type dynamin-2 but not in cells expressing a dominant-negative mutant. Dephosphorylation of dynamin is important for its assembly. Dopamine increased protein phosphatase 2A activity and dephosphorylated dynamin-2. In cells expressing a dominant-negative mutant of protein phosphatase 2A, dopamine failed to dephosphorylate dynamin-2 and to reduce Na(+),K(+)-ATPase activity. Dynamin-2 is phosphorylated at Ser(848), and expression of the S848A mutant significantly blocked the inhibitory effect of dopamine. These results demonstrate a distinct signaling network originating from the dopamine receptor that regulates the state of dynamin-2 phosphorylation and that promotes its location (by interaction with phosphatidylinositol 3-kinase) at the site of Na(+),K(+)-ATPase endocytosis.  相似文献   

11.
Our previous studies on cardiac myocytes showed that positive inotropic concentrations of the digitalis drug ouabain activated signaling pathways linked to Na(+)-K(+)-ATPase through Src and epidermal growth factor receptor (EGFR) and led to myocyte hypertrophy. In view of the known involvement of phosphatidylinositol 3-kinase (PI3K)-Akt pathways in cardiac hypertrophy, the aim of the present study was to determine whether these pathways are also linked to cardiac Na(+)-K(+)-ATPase and, if so, to assess their role in ouabain-induced myocyte growth. In a dose- and time-dependent manner, ouabain activated Akt and phosphorylation of its substrates mammalian target of rapamycin and glycogen synthase kinase in neonatal rat cardiac myocytes. Akt activation by ouabain was sensitive to PI3K inhibitors and was also noted in adult myocytes and isolated hearts. Ouabain caused a transient increase of phosphatidylinositol 3,4,5-trisphosphate content of neonatal myocytes, activated class IA, but not class IB, PI3K, and increased coimmunoprecipitation of the alpha-subunit of Na(+)-K(+)-ATPase with the p85 subunit of class IA PI3K. Ouabain-induced activation of ERK1/2 was prevented by Src, EGFR, and MEK inhibitors, but not by PI3K inhibitors. Activation of Akt by ouabain, however, was sensitive to inhibitors of PI3K and Src, but not to inhibitors of EGFR and MEK. Similarly, ouabain-induced myocyte hypertrophy was prevented by PI3K and Src inhibitors, but not by an EGFR inhibitor. These findings 1) establish the linkage of the class IA PI3K-Akt pathway to Na(+)-K(+)-ATPase and the essential role of this linkage to ouabain-induced myocyte hypertrophy and 2) suggest cross talk between these PI3K-Akt pathways and the signaling cascades previously identified to be associated with cardiac Na(+)-K(+)-ATPase.  相似文献   

12.
We have shown before that Na(+)/K(+)-ATPase acts as a signal transducer, through protein-protein interactions, in addition to being an ion pump. Interaction of ouabain with the enzyme of the intact cells causes activation of Src, transactivation of EGFR, and activation of the Ras/ERK1/2 cascade. To determine the role of protein kinase C (PKC) in this pathway, neonatal rat cardiac myocytes were exposed to ouabain and assayed for translocation/activation of PKC from cytosolic to particulate fractions. Ouabain caused rapid and sustained stimulation of this translocation, evidenced by the assay of Ca(2+)-dependent and Ca(2+)-independent PKC activities and by the immunoblot analysis of the alpha, delta, and epsilon isoforms of PKC. Dose-dependent stimulation of PKC translocation by ouabain (1-100 microm) was accompanied by no more than 50% inhibition of Na(+)/K(+)-ATPase and doubling of [Ca(2+)](i), changes that do not affect myocyte viability and are known to be associated with positive inotropic, but not toxic, effects of ouabain in rat cardiac ventricles. Ouabain-induced activation of ERK1/2 was blocked by PKC inhibitors calphostin C and chelerythrine. An inhibitor of phosphoinositide turnover in myocytes also antagonized ouabain-induced PKC translocation and ERK1/2 activation. These and previous findings indicate that ouabain-induced activation of PKC and Ras, each linked to Na(+)/K(+)-ATPase through Src/EGFR, are both required for the activation of ERK1/2. Ouabain-induced PKC translocation and ERK1/2 activation were dependent on the presence of Ca(2+) in the medium, suggesting that the signal-transducing and ion-pumping functions of Na(+)/K(+)-ATPase cooperate in activation of these protein kinases and the resulting regulation of contractility and growth of the cardiac myocyte.  相似文献   

13.
In this study, the correlation between Cl(-) influx in freshwater tilapia and various transporters or enzymes, the Cl(-)/HCO(3)(-) exchanger, Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase were examined. The inhibitors 2x10(-4) M ouabain (a Na(+),K(+)-ATPase inhibitor), 10(-5) M NEM (a V-type H(+)-ATPase inhibitor), 10(-2) M ACTZ (acetazolamide, a carbonic anhydrase inhibitor), and 6x10(-4) M DIDS (a Cl(-)/HCO(3)(-) exchanger inhibitor) caused 40%, 60%-80%, 40%-60%, and 40%-60% reduction in Cl(-) influx of freshwater tilapia, respectively. The inhibitor 2x10(-4) M ouabain also caused 50%-65% inhibition in gill Na(+),K(+)-ATPase activity. Western blot results showed that protein levels of gill Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase in tilapia acclimated in low-Cl(-) freshwater were significantly higher than those acclimated to high-Cl(-) freshwater. Based on these data, we conclude that Na(+),K(+)-ATPase, V-H(+)-ATPase, the Cl(-)/HCO(3)(-) exchanger, and carbonic anhydrase may be involved in the active Cl(-) uptake mechanism in gills of freshwater-adapted tilapia.  相似文献   

14.
15.
16.
Apart from Na(+),K(+)-ATPase, a second sodium pump, Na(+)-stimulated, K(+)-independent ATPase (Na(+)-ATPase) is expressed in proximal convoluted tubule of the mammalian kidney. The aim of this study was to develop a method of Na(+)-ATPase assay based on the method previously used by us to measure Na(+),K(+)-ATPase activity. The ATPase activity was assayed as the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Na(+)-ATPase activity was calculated as the difference between the activities measured in the presence and in the absence of 50 mM NaCl. Na(+)-ATPase activity was detected in the renal cortex (3.5 +/- 0.2 mumol phosphate/h per mg protein), but not in the renal medulla. Na(+)-ATPase was not inhibited by ouabain or an H(+),K(+)-ATPase inhibitor, Sch 28080, but was almost completely blocked by 2 mM furosemide. Leptin administered intraperitoneally (1 mg/kg) decreased the Na(+),K(+)-ATPase activity in the renal medulla at 0.5 and 1 h by 22.1% and 27.1%, respectively, but had no effect on Na(+)-ATPase in the renal cortex. Chronic hyperleptinemia induced by repeated subcutaneous leptin injections (0.25 mg/kg twice daily for 7 days) increased cortical Na(+),K(+)-ATPase, medullary Na(+),K(+)-ATPase and cortical Na(+)-ATPase by 32.4%, 84.2% and 62.9%, respectively. In rats with dietary-induced obesity, the Na(+),K(+)- ATPase activity was higher in the renal cortex and medulla by 19.7% and 34.3%, respectively, but Na(+)-ATPase was not different from control. These data indicate that both renal Na(+)-dependent ATPases are separately regulated and that up-regulation of Na(+)-ATPase may contribute to Na(+) retention and arterial hypertension induced by chronic hyperleptinemia.  相似文献   

17.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

18.
Halenaquinol inhibited the partial reactions of ATP hydrolysis by rat brain cortex Na(+),K(+)-ATPase, such as [3H]ATP binding to the enzyme, Na(+)-dependent front-door phosphorylation from [gamma-(33)P]ATP, and also Na(+)- and K(+)-dependent E(1)<-->E(2) conformational transitions of the enzyme. Halenaquinol abolished the positive cooperativity between the Na(+)- and K(+)-binding sites on the enzyme. ATP and sulfhydryl-containing reagents (cysteine and dithiothreitol) protected the Na(+),K(+)-ATPase against inhibition. Halenaquinol can react with additional vital groups in the enzyme after blockage of certain sulfhydryl groups with 5,5'-dithio-bis-nitrobenzoic acid. Halenaquinol inhibited [3H]ouabain binding to Na(+),K(+)-ATPase under phosphorylating and non-phosphorylating conditions. Binding of fluorescein 5'-isothiocyanate to Na(+),K(+)-ATPase and intensity of fluorescence of enzyme tryptophanyl residues were decreased by halenaquinol. We suggest that interaction of halenaquinol with the essential sulfhydryls in/or near the ATP-binding site of Na(+),K(+)-ATPase resulted in a change of protein conformation and subsequent alteration of overall and partial enzymatic reactions.  相似文献   

19.
A family of aryl isothiouronium derivatives was designed as probes for cation binding sites of Na(+),K(+)-ATPase. Previous work showed that 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) acts as a competitive blocker of Na(+) or K(+) occlusion. In addition to a high-affinity cytoplasmic site (K(D) < 1 microM), a low-affinity site (K(D) approximately 10 microM) was detected, presumably extracellular. Here we describe properties of Br-TITU as a blocker at the extracellular surface. In human red blood cells Br-TITU inhibits ouabain-sensitive Na(+) transport (K(D) approximately 30 microM) in a manner antagonistic with respect to extracellular Na(+). In addition, Br-TITU impairs K(+)-stimulated dephosphorylation and Rb(+) occlusion from phosphorylated enzyme of renal Na(+),K(+)-ATPase, consistent with binding to an extracellular site. Incubation of renal Na(+),K(+)-ATPase with Br-TITU at pH 9 irreversibly inactivates Na(+),K(+)-ATPase activity and Rb(+) occlusion. Rb(+) or Na(+) ions protect. Preincubation of Br-TITU with red cells in a K(+)-free medium at pH 9 irreversibly inactivates ouabain-sensitive (22)Na(+) efflux, showing that inactivation occurs at an extracellular site. K(+), Cs(+), and Li(+) ions protect against this effect, but the apparent affinity for K(+), Cs(+), or Li(+) is similar (K(D) approximately 5 mM) despite their different affinities for external activation of the Na(+) pump. Br-TITU quenches tryptophan fluorescence of renal Na(+),K(+)-ATPase or of digested "19 kDa membranes". After incubation at pH 9 irreversible loss of tryptophan fluorescence is observed and Rb(+) or Na(+) ions protect. The Br-TITU appears to interact strongly with tryptophan residue(s) within the lipid or at the extracellular membrane-water interface and interfere with cation occlusion and Na(+),K(+)-ATPase activity.  相似文献   

20.
Bufadienolides are structurally related to the clinically relevant cardenolides (e.g., digoxin) and are now considered as endogenous steroid hormones. Binding of ouabain to Na(+)-K(+)-ATPase has been associated, in kidney cells, to the activation of the Src kinase pathway and Na(+)-K(+)-ATPase internalization. Nevertheless, whether the activation of this cascade also occurs with other cardiotonic steroids and leads to diuresis and natriuresis in the isolated intact kidney is still unknown. In the present work, we perfused rat kidneys for 120 min with bufalin (1, 3, or 10 μM) and measured its vascular and tubular effects. Thereafter, we probed the effect of 10 μM 3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4amine (PP2), a Src family kinase inhibitor, and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (UO126), a highly selective inhibitor of both MEK1 and MEK2, on bufalin-induced renal alterations. Bufalin at 3 and 10 μM profoundly increased several parameters of renal function in a time- and/or concentration-dependent fashion. At a concentration that produced similar inhibition of the rat kidney Na(+)-K(+)-ATPase, ouabain had a much smaller diuretic and natriuretic effect. Although bufalin fully inhibited the rat kidney Na(+)-K(+)-ATPase in vitro, its IC(50) (33 ± 1 μM) was threefold higher than the concentration used ex vivo and all its renal effects were blunted by PP2 and UO126. Furthermore, the phosphorylated (activated) ERK1/2 expression was increased after bufalin perfusion and this effect was totally prevented after PP2 pretreatment. The present study shows for the first time the direct diuretic, natriuretic, and kaliuretic effects of bufalin in isolated rat kidney and the relevance of Na(+)-K(+)-ATPase-mediated signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号