首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human neutrophils normally have a very short half-life and die by apoptosis. Cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) can delay this apoptosis via increases in the cellular levels of Mcl-1, an anti-apoptotic protein of the Bcl-2 family with a rapid turnover rate. Here we have shown that inhibition of the proteasome (a) decreases the rate of Mcl-1 turnover within neutrophils and (b) significantly delays apoptosis. This led us to determine whether GM-CSF could enhance neutrophil survival by altering the rate of Mcl-1 turnover. Addition of GM-CSF to neutrophils enhanced Mcl-1 stability and delayed apoptosis by signaling pathways requiring PI3K/Akt and p44/42 Erk/Mek, because inhibitors of these pathways completely abrogated the GM-CSF-mediated effect on both Mcl-1 stability and apoptosis delay. Conversely, induction of Mcl-1 hyperphosphorylation by the phosphatase inhibitor, okadaic acid, significantly accelerated both Mcl-1 turnover and apoptosis. Neither the calpain inhibitor, carbobenzoxy-valinyl-phenylalaninal, nor the pan caspase inhibitor, benzyloxycarbonyl-VAD-fluoromethylketone, had any effect on Mcl-1 stability under these conditions. These observations indicate that profound changes in the rate of neutrophil apoptosis following cytokine signaling occur via dynamic changes in the rate of Mcl-1 turnover via the proteasome.  相似文献   

2.
In the absence of activation signals, circulating human neutrophils and eosinophils undergo spontaneous apoptosis. The glucocorticoid dexamethasone (Dex) accelerates apoptosis in inflammatory cells such as eosinophils, but uniquely delays neutrophil apoptosis. Corresponding to the opposite effects of Dex on granulocyte apoptosis, we demonstrate that in neutrophils and eosinophils Dex oppositely affects expression of the anti-apoptotic Bcl-2 family protein Mcl-1L. Mcl-1L expression declines over time in vitro; however, Dex maintains Mcl-1L expression in neutrophils. In contrast, Dex accelerates Mcl-1L protein loss in eosinophils. Neither Mcl-1S, a pro-apoptotic splice variant, nor Bax were affected. Dex treatment in the presence of a translation inhibitor stabilized existing Mcl-1L protein in neutrophils, while Mcl-1L stability in eosinophils was unaffected. Accordingly, delay of neutrophil apoptosis by Dex was prevented by antisense Mcl-1L siRNA. Our findings suggest that regulation of Mcl-1L degradation plays an important role in the opposite effects of Dex on granulocyte apoptosis.  相似文献   

3.
Human tissue inflammation is terminated, at least in part, by the death of inflammatory neutrophils by apoptosis. The regulation of this process is therefore key to understanding and manipulating inflammation resolution. Previous data have suggested that the short-lived pro-survival Bcl-2 family protein, Mcl-1, is instrumental in determining neutrophil lifespan. However, Mcl-1 can be cleaved following caspase activity, and the possibility therefore remains that the observed fall in Mcl-1 levels is due to caspase activity downstream of caspase activation, rather than being a key event initiating apoptosis in human neutrophils.We demonstrate that apoptosis in highly purified neutrophils can be almost completely abrogated by caspase inhibition with the highly effective di-peptide caspase inhibitor, Q-VD.OPh, confirming the caspase dependence of neutrophil apoptosis. Effective caspase inhibition does not prevent the observed fall in Mcl-1 levels early in ultrapure neutrophil culture, suggesting that this fall in Mcl-1 levels is not a consequence of neutrophil apoptosis. However, at later timepoints, declines in Mcl-1 can be reversed with effective caspase inhibition, suggesting that Mcl-1 is both an upstream regulator and a downstream target of caspase activity in human neutrophils.  相似文献   

4.
Inhibition of translation plays a role in apoptosis induced by a variety of stimuli, but the mechanism by which it promotes apoptosis has not been established. We have investigated the hypothesis that selective degradation of anti-apoptotic regulatory protein(s) is responsible for apoptosis resulting from translation inhibition. Induction of apoptosis by cycloheximide was detected within 2-4 h and blocked by proteasome inhibitors, indicating that degradation of short-lived protein(s) was required. Caspase inhibition and overexpression of Bcl-x(L) blocked cycloheximide-induced apoptosis. In addition, cycloheximide induced rapid activation of Bak and Bax, which required proteasome activity. Mcl-1 was degraded by the proteasome with a half-life of approximately 30 min following inhibition of protein synthesis, preceding Bak/Bax activation and the onset of apoptosis. Overexpression of Mcl-1 blocked apoptosis induced by cycloheximide, whereas RNA interference knockdown of Mcl-1 induced apoptosis. Knockdown of Bim and Bak, downstream targets of Mcl-1, inhibited cycloheximide-induced apoptosis, as did knockdown of Bax. Apoptosis resulting from inhibition of translation thus involves the rapid degradation of Mcl-1, leading to activation of Bim, Bak, and Bax. Because of its rapid turnover, Mcl-1 may serve as a convergence point for signals that affect global translation, coupling translation to cell survival and the apoptotic machinery.  相似文献   

5.
6.
Human neutrophils underwent spontaneous apoptosis, which was accompanied with proteasome-mediated degradation of Mcl-1 and X-linked inhibitor of apoptosis (XIAP). Calpain inhibitors (PD150606 and N-acetyl-Leu-Leu-Nle-CHO) prevented spontaneous neutrophil apoptosis and degradation of Mcl-1 and XIAP, and the effects of calpain inhibitors on neutrophils were resistant to cycloheximide. Calpain inhibitors induced protein kinase A (PKA) activation, which was unaccompanied with an increase in intracellular cyclic AMP. Calpain inhibition-mediated delayed neutrophil apoptosis, stabilization of Mcl-1 and XIAP, and phosphorylation of PKA substrates were suppressed by H-89 (specific PKA inhibitor). These findings suggest that calpain inhibition delays neutrophil apoptosis via cyclic AMP-independent activation of PKA and PKA-mediated stabilization of Mcl-1 and XIAP.  相似文献   

7.
Short-lived neutrophils play a predominant role in innate immunity, the effects of exercise training on neutrophil survival is unclear. In this study, we investigated the underlying mechanisms of training effects on human neutrophil apoptosis. Healthy male subjects were trained on a cycling ergometer for 8 weeks and followed by 4 weeks of detraining. Blood neutrophils were collected before exercise, after training, and after detraining. Comparing with pre-exercise specimens, neutrophils collected after training showed reduced apoptosis rate, which partially returned after detraining. Various intracellular proteins, including iNOS, Mcl-1, A1, Grp78, and IL-8, were upregulated by training, and they remained high after detraining. Upregulated iNOS was closely correlated with these anti-apoptotic molecules in neutrophils. Furthermore, the possible mechanism by which iNOS suppressed apoptosis was explored. Neutrophil apoptosis was accelerated by blocking and retarded by stimulating the endogenous iNOS activity. As an anti-apoptosis mediator of NO signaling, the Mcl-1 level dropped by depletion of the major NO downstream molecule cGMP and such loss of Mcl-1 was avoidable when supplying exogenous NO. Upon activation of NO-cGMP signaling, neutrophils held increased Mcl-1 expression and delayed apoptosis. Collectively, our results suggested that exercise training may retard neutrophil apoptosis by upregulating the iNOS-NO-cGMP-Mcl-1 pathway.  相似文献   

8.
Molecular control of neutrophil apoptosis   总被引:26,自引:0,他引:26  
Human neutrophils constitutively undergo apoptosis and this process is critical for the resolution of inflammation. Whilst neutrophil apoptosis can be modulated by a wide variety of agents including GM-CSF, LPS and TNF-alpha, the molecular mechanisms underlying neutrophil death and survival remain largely undefined. Recent studies have shown the involvement of members of the Bcl-2 protein family (especially Mcl-1 and A1) and caspases in the regulation and execution of neutrophil apoptosis. Cell surface receptors and protein kinases, particularly mitogen-activated protein kinases, also play critical roles in transducing the signals that result in neutrophil apoptosis or extended survival. This review summarises current knowledge on the molecular mechanisms and components of neutrophil apoptosis.  相似文献   

9.
ABSTRACT: BACKGROUND: Delayed neutrophil apoptosis may be an important factor in the persistent inflammation associated with chronic obstructive pulmonary disease (COPD). Bcl-2 family proteins are important regulators of neutrophil apoptosis. We determined the mRNA levels of proapoptotic Bak and anti-aptototic Bcl-xl and Mcl-1 members of the Bcl-2 family in unstimulated peripheral blood neutrophils from patients with mild to moderate COPD and compared these to neutrophils from healthy controls. METHODS: Neutrophils were isolated from peripheral blood samples of 47 COPD patients (smokers: N = 24) and 47 healthy controls (smokers: N = 24). Percentages of apoptotic cells were determined at 4, 24, and 36 h for unstimulated neutrophils cultured in vitro. Neutrophil mRNA expression of Bak, Bcl-xl, and Mcl-1 was determined by real-time polymerase chain reaction (PCR). FEV1 (% predicted) and FVC were determined by spirometry and correlations between mRNA levels and lung function parameters were determined. RESULTS: The percentages of apoptotic cells among unstimulated neutrophils from COPD patients were significantly lower compared to cells from controls after 4, 24, and 36 h in culture; smoking history had only a minimal effect on these differences. Unstimulated neutrophils from COPD patients had significantly lower Bak mRNA expression and higher expressions of Bcl-xl and Mcl-1 mRNA than cells from healthy controls. Again, smoking history had only a minimal effect on these trends. Bak mRNA expression was significantly positively correlated with both %predicted FEV1 and the FEV1/FVC ratio, while Bcl-xl and Mcl-1 mRNA expressions were significantly negatively correlated with %predicted FEV1 and the FEV1/FVC ratio. CONCLUSIONS: The genes for pro-apoptotic Bak, and anti-apoptotic Bcl-xl and Mcl-1 may be important in regulating the delayed neutrophil apoptosis observed in COPD, which may contribute to COPD pathogenesis. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1605269445677066.  相似文献   

10.
The constitutive commitment of neutrophils to apoptosis is a key process for the control and resolution of inflammation and it can be delayed by various inflammatory mediators including leukotriene B4 (LTB4). The mechanisms by which LTB4 contributes to neutrophil survival are still unclear and the present work aims at identifying intracellular pathways underlying this effect. Inhibition of human neutrophil apoptosis by LTB4 was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and by the specific MEK inhibitor PD98059. In contrast, inhibitors of p38 MAPK, Jak2/3 and Src did not hinder the anti-apoptotic effect of LTB4. We also investigated the effects of members of the Bcl-2 family as they play a crucial role in the regulation of programmed cell death. When neutrophils were incubated with LTB4 for 1 to 6 h, the mRNA levels of the anti-apoptotic protein Mcl-1 were upregulated approximately 2-fold, while those of the pro-apoptotic protein Bax were downregulated 3- to 4-fold, as determined by real-time PCR. Accordingly, Western blot analysis revealed that the expression of Mcl-1 was upregulated in presence of LTB4, while flow cytometric analysis revealed that Bax protein was downregulated. Furthermore, the modulatory effects of LTB4 on Mcl-1 and Bax proteins were abolished in the presence of either wortmannin or PD98059. Taken together, these results demonstrate the participation of PI3-K and MEK/ERK kinases, as well as regulatory apoptotic proteins such as Mcl-1 and Bax, in the anti-apoptotic effects of LTB4 in human neutrophils.  相似文献   

11.
Delayed neutrophil apoptosis and overshooting neutrophil activity contribute to organ dysfunction and subsequent organ failure in sepsis. Here, we investigated apoptotic signaling pathways that are involved in the inhibition of spontaneous apoptosis in neutrophils isolated from major trauma patients with uneventful outcome as well as in those with sepsis development. DNA fragmentation in peripheral blood neutrophils showed an inverse correlation with the organ dysfunction at d 10 after trauma in all patients, supporting the important role of neutrophil apoptosis regulation for patient's outcome. The expression of the antiapoptotic Bcl-2 protein members A1 and Mcl-1 were found to be diminished in the septic patients at d 5 and d 10 after trauma. This decrease was also linked to an impaired intrinsic apoptosis resistance, which has been previously shown to occur in neutrophils during systemic inflammation. In patients with sepsis development, delayed neutrophil apoptosis was found to be associated with a disturbed extrinsic pathway, as demonstrated by reduced caspase-8 activity and Bid truncation. Notably, the expression of Dad1 protein, which is involved in protein N-glycosylation, was significantly increased in septic patients at d 10 after trauma. Taken together, our data demonstrate that neutrophil apoptosis is regulated by both the intrinsic and extrinsic pathway, depending on patient's outcome. These findings might provide a molecular basis for new strategies targeting cell death pathways in apoptosis-resistant neutrophils during systemic inflammation.  相似文献   

12.
13.
Kato T  Kutsuna H  Oshitani N  Kitagawa S 《FEBS letters》2006,580(19):4582-4586
Human neutrophils underwent spontaneous apoptosis, which was accompanied by degradation of Mcl-1, but not other anti-apoptotic molecules (cIAP1, cIAP2, A1, survivin and Bcl-2). Spontaneous neutrophil apoptosis and Mcl-1 degradation were prevented by cyclic AMP (cAMP) agonists (dibutyryl cAMP and prostaglandin E(1)), and the effects of cAMP agonists on neutrophils were highly resistant to cycloheximide, a protein synthesis inhibitor, although slight increase in Mcl-1 mRNA expression was induced by cAMP agonists. Proteasome inhibitors (epoxomicin and lactacystin) also prevented spontaneous neutrophil apoptosis and Mcl-1 degradation to the same extent as cAMP agonists, and no additive effect was obtained by combination of cAMP agonists and proteasome inhibitors. These findings suggest that cAMP agonists, like proteasome inhibitors, delay neutrophil apoptosis primarily via stabilization of Mcl-1.  相似文献   

14.
Neutrophils enter the peripheral blood from the bone marrow and die after a short time. Molecular analysis of spontaneous neutrophil apoptosis is difficult as these cells die rapidly and cannot be easily manipulated. We use conditional Hoxb8 expression to generate mouse neutrophils and test the regulation of apoptosis by extensive manipulation of B-cell lymphoma protein 2 (Bcl-2)-family proteins. Spontaneous apoptosis was preceded by downregulation of anti-apoptotic Bcl-2 proteins. Loss of the pro-apoptotic Bcl-2 homology domain (BH3)-only protein Bcl-2-interacting mediator of cell death (Bim) gave some protection, but only neutrophils deficient in both BH3-only proteins, Bim and Noxa, were strongly protected against apoptosis. Function of Noxa was at least in part neutralization of induced myeloid leukemia cell differentiation protein (Mcl-1) in neutrophils and progenitors. Loss of Bim and Noxa preserved neutrophil function in culture, and apoptosis-resistant cells remained in circulation in mice. Apoptosis regulated by Bim- and Noxa-driven loss of Mcl-1 is thus the final step in neutrophil differentiation, required for the termination of neutrophil function and neutrophil-dependent inflammation.  相似文献   

15.
Protein phosphatase (PP) activity is associated with the regulation of apoptosis in neutrophils. However, the underlying regulatory mechanism(s) in apoptosis remain unclear. The type of cell death induced by okadaic acid (OA), the inhibitor of PP1 and PP2A, is characterized by apoptotic morphological changes of the cells and annexin V-positive staining without DNA fragmentation. The apoptotic effects of OA and calyculin A on neutrophils were observed at concentrations ranging from 50 to 200 nM, or 10 to 50 nM, respectively. Cyclosporine A (a PP2B specific inhibitor), however, did not exhibit any pro-apoptotic effects. OA and calyculin A, but not cyclosporine A, exhibited significant effects on protein levels and on the electrophoretic mobility of Mcl-1. zVAD-fmk, a pancaspase inhibitor, failed to inhibit the effect of OA on the caspase-3 activity, procaspase-3 processing, and the apoptotic rate of neutrophils. However, 4-(2-aminoethyl) benzenesulfonylfluoride (AEBSF), a general serine protease inhibitor, significantly abrogated the OA-induced mobility shift in procaspase-3, caspase-3 activation, and the apoptotic morphological changes in neutrophils. Moreover, OA enhanced the serine protease activity of the neutrophils. The addition of the proteinase-3 protein increased the rate of neutrophil apoptosis, which was also blocked by AEBSF but not by zVAD-fmk. These results suggest that OA induces procaspase-3 processing but that OA-induced apoptosis is caspase-independent and serine protease-dependent.  相似文献   

16.
Proteolytic cleavage and subsequent activation of protein kinase C (PKC) delta is required for apoptosis induced by a variety of genotoxic agent, including UV radiation. In addition, overexpression of the constitutively active PKCdelta catalytic fragment (PKCdelta-cat) is sufficient to trigger Bax activation, cytochrome c release, and apoptosis. While PKCdelta is a key apoptotic effector, the downstream target(s) responsible for the mitochondrial apoptotic cascade are not known. We found that expression of the active PKCdelta-cat in HaCaT cells triggers a reduction in the anti-apoptotic protein Mcl-1, similar to UV radiation. The down-regulation of Mcl-1 induced by PKCdelta-cat was not at the mRNA level but was due to decreased protein half-life. Overexpression of Mcl-1 protected HaCaT cells from both UV and PKCdelta-cat-induced apoptosis and blocked the release of cytochrome c from the mitochondria, indicating that Mcl-1 down-regulation was required for apoptosis signaling. Indeed, down-regulation of Mcl-1 with siRNA slightly increased the basal apoptotic rate of HaCaT cells and dramatically sensitized them to UV or PKCdelta-cat-induced apoptosis. HaCaT cells with down-regulated Mcl-1 had higher activated Bax protein, as measured by Bax cross-linking, indicating that Mcl-1 down-regulation is sufficient for Bax activation. Finally, recombinant PKCdelta could phosphorylate Mcl-1 in vitro, identifying Mcl-1 as a direct target for PKCdelta. Overall our results identify Mcl-1 as an important target for PKCdelta-cat that can mediate its pro-apoptotic effects on mitochondria to amplify the apoptotic signaling induced by a wide range of apoptotic stimuli.  相似文献   

17.
Serine 64 phosphorylation enhances the antiapoptotic function of Mcl-1   总被引:3,自引:0,他引:3  
Mcl-1 is an antiapoptotic Bcl-2 family member that is highly regulated and when dysregulated contributes to cancer. The Mcl-1 protein is phosphorylated at multiple sites in response to different signaling events. Phosphorylations at Thr163 (by ERK) and Ser159 (by glycogen-synthase kinase 3beta) have recently been shown to slow and enhance, respectively, Mcl-1 protein turnover. Phosphorylation is also known to be stimulated at other, as-yet uncharacterized sites in the G2/M phase of the cell cycle. Using an S peptide-tagged Mcl-1 T163A mutant, Ser64 was identified as a novel Mcl-1 phosphorylation site by mass spectrometry. Immunoblotting demonstrated that phosphorylation at this site was maximal in cells in G2/M phase, was enhanced by tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) treatment, was blocked by inhibitors of CDK (but not ERK or glycogen-synthase kinase 3beta), and was stimulated in vitro by CDK 1, CDK2, and JNK1. The half-life of a nonphosphorylatable S64A Mcl-1 mutant was indistinguishable from that of the wild type polypeptide. In contrast, this mutant failed to protect cells from TRAIL-mediated apoptosis, whereas reconstitution with the phosphomimetic S64E Mcl-1 mutant rendered cells TRAIL-resistant. This anti-apoptotic phenotype of the S64E Mcl-1 mutant was also associated with enhanced binding to the proapoptotic proteins Bim, Noxa, and Bak. A pharmacological CDK inhibitor that reduced Ser64 phosphorylation also sensitized cells to TRAIL cytotoxicity. Collectively, these observations not only identify G2/M-associated phosphorylation at Ser64 as a critical determinant of the antiapoptotic activity of Mcl-1 but also elucidate a novel mechanism by which CDK1/2 inhibitors can enhance the effectiveness of the cytotoxic cytokine TRAIL.  相似文献   

18.
19.
G protein-coupled receptor (GPR)109A (HM74A) is a G(i) protein-coupled receptor, which is activated by nicotinic acid (NA), a lipid-lowering drug. Here, we demonstrate that mature human neutrophils, but not eosinophils, express functional GPR109A receptors. The induction of the GPR109A gene appears to occur late in the terminal differentiation process of neutrophils, since a mixed population of immature bone marrow neutrophils did not demonstrate evidence for its expression. NA accelerated apoptosis in cultured neutrophils in a concentration-dependent manner, as assessed by phosphatidylserine redistribution, caspase-3 activation, and DNA fragmentation assays. The pro-apoptotic effect of NA was abolished by pertussis toxin, which was used to block G(i) proteins, suggesting a receptor-mediated mechanism. Activation of GPR109A by NA resulted in decreased levels of cyclic adenosine monophosphate (cAMP), most likely due to G(i)-mediated inhibition of adenylyl cyclase activity. NA-induced apoptosis was reversed by the addition of cell-permeable cAMP, pointing to the possibility that reduced cAMP levels promote apoptosis in neutrophils. Distal mechanism involved in this process may include the post-translational modification of members of the Bcl-2 family, such as dephosphorylation of pro-apoptotic Bad and antiapoptotic Mcl-1 proteins. Taken together, following maturation in the bone marrow, neutrophils express functional GPR109A receptors, which might be involved in the regulation of neutrophil numbers. Moreover, this study identified a new cellular target of NA and future drugs activating GPR109A receptors, the mature neutrophil.  相似文献   

20.
Epidermal growth factor (EGF) protects against death receptor induced apoptosis in epithelial cells. Herein, we demonstrate that EGF protection against tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced apoptosis is mediated by increased expression of the Bcl-2 family member myeloid cell leukemia 1 (Mcl-1). EGF increased the mRNA and protein levels of Mcl-1. Furthermore, expression of ErbB1 alone or in combination with ErbB2 in NIH3T3 cells up-regulates Mcl-1 following EGF treatment. In addition, up-regulation of Mcl-1 by EGF is mediated through AKT and NFkappaB activation since kinase inactive AKT and DeltaIkappaB effectively blocks this up-regulation. NFkappaB was also critical for the ability of EGF to prevent TRAIL induced apoptosis as a dominant negative IkappaB (DeltaIkappaB) blocked NFkappaB activation, and relieved EGF protection against TRAIL mediated mitochondrial cytochrome-c release and apoptosis. Finally, anti-sense oligonucleotides directed against Mcl-1 effectively reduced the protein levels of Mcl-1 and blocked EGF protection against TRAIL induced mitochondrial cytochrome-c release and apoptosis. Taken together, EGF signaling leads to increased Mcl-1 expression that is required for blockage of TRAIL induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号