首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Independent evolutionary lineages often display similar characteristics in comparable environments. Three kinds of historical hypotheses could explain this convergence. The first is adaptive and evolutionary: nonrandom patterns may result from analogous evolutionary responses to shared conditions. The second explanation is exaptive and ecological: species may be filtered by their suitability for a particular type of environment. The third potential explanation is a null hypothesis of random colonization from a historically nonrandom source pool. Here we demonstrate that both exaptation and adaptation have produced convergent similarity in different size-related characters of solitary island lizards. Large sexual size dimorphism results from adaptive response to solitary existence; uniform, intermediate size results from ecological filtering of potential colonizers. These results demonstrate the existence of deterministic exaptive convergence and suggest that convergent phenomena may require historical explanations that are ecological as well as evolutionary.  相似文献   

2.
The repeated occurrence of similar morphologies in organisms from similar habitats provides good evidence of convergent selection, and convergent patterns of evolutionary change. In lizards, a flattened morphology has often been noted; however, whether this trait is convergent in specific habitats has never been tested using phylogenetic methods. The present study examined patterns of morphological convergence in 18 species of tropical Lygosomine skinks from three broad habitat categories (generalist, leaf litter-dwelling, and rock-using species). In general, although there where relatively few morphological differences of species from different habitats, phylogenetic analyses revealed that rock-using species have consistently and repeatedly evolved a dorsoventrally flattened head and body. The adaptive basis of this flattened morphology is consistent with both biomechanical predictions of performance (e.g. climbing locomotion) and ecology (e.g. use of rock crevices, camouflage) of species that occupy rocky habitats.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 399–411.  相似文献   

3.
Ecological theory predicts that communities using the same resources should have similar structure, but evolutionary constraints on colonisation and niche shifts may hamper such convergence. Multitrophic communities of wasps exploiting fig fruits, which first evolved about 75MYA, do not show long‐term ‘inheritance’ of taxonomic (lineage) composition or species diversity. However, communities on three continents have converged ecologically in the presence and relative abundance of five insect guilds that we define. Some taxa fill the same niches in each community (phylogenetic niche conservatism). However, we show that overall convergence in ecological community structure depends also on a combination of niche shifts by resident lineages and local colonisations of figs by other insect lineages. Our study explores new ground, and develops new heuristic tools, in combining ecology and phylogeny to address patterns in the complex multitrophic communities of insect on plants, which comprise a large part of terrestrial biodiversity.  相似文献   

4.
In this paper I examine the extent to which contemporary ecological patterns in 42 harvester ant assemblages of three continents can be explained as a result of present-day environments or from differences in the history of each ant biota. The contribution of each factor to the overall variability of six community characters was evaluated by the ANOVA procedure. The mediod revealed absence of convergence in three-continent and pairwise-continent analyses in almost every community attribute that was measured. Significant convergence was detected only in die foraging score for the North America-South America comparison. This implies mat the foraging mode used by ants for searching seeds is more similar within similar environments in the two continents than between different environments in the same continent. Significant historical effects were much more prevalent than convergence both in three-continent and pairwise-continent comparisons. Abundance at baits, body size, and foraging distance were more variable within similar environments in different continents than between different environments in the same continent. The overall absence of convergence documented in this study suggests that constraints related to the evolutionary history of each species assemblage have inhibited convergent evolution in response to local selective pressures.  相似文献   

5.
Functional convergence of different communities in similar environments would be expected as an outcome of the operation of 'assembly rules'. At an ecological level, competitive exclusion would restrict the co-occurrence of species with similar niches. Repetition of competitive sorting on an evolutionary time scale might lead to character displacement. Either process would ultimately lead to species niches being more regularly arranged in ecological factor space than expected on a random basis, with the consequence that the niche structure of different communities in similar environments would converge. We assessed the applicability of this model of community structure by comparing vegetation between study sites spaced in altitude 20 m apart along a continuous gradient in South Westland low-altitude conifer/broad-leaved forest, with respect to seven variates of vegetation texture primarily concerning the morphology of the photosynthetic unit (PSU). We employed a null model that assigns observed species to sites at random, as would be expected in the absence of assembly rules for the communities, comparing observed variation in texture to variation under the null model to look for convergence or divergence and to determine statistical significance. Significant convergence between adjacent sites was found in all variates when species weighted either by percentage cover or cover rank were used to calculate site texture means, but convergence was less pronounced among groups of five or 10 consecutive sites. Significant divergence occurred at the five-site level (three variates) using cover rank as a weighting factor and at the two-, five- and 10-site levels (five variates) when no weighting factor was used. Overall, divergence was more pronounced among sets of sites spanning a wider range in altitude, which seemed consistent with the presence of an environmental gradient along the transect, although a DCA ordination of site floristics failed to reveal a simple altitudinal trend. This study is the first to seek community-level convergence within a local area and the first to find statistically significant convergence between vegetation patches.  相似文献   

6.
A synthesis between community ecology and evolutionary biology is emerging that identifies how genetic variation and evolution within one species can shape the ecological properties of entire communities and, in turn, how community context can govern evolutionary processes and patterns. This synthesis incorporates research on the ecology and evolution within communities over short timescales (community genetics and diffuse coevolution), as well as macroevolutionary timescales (community phylogenetics and co-diversification of communities). As we discuss here, preliminary evidence supports the hypothesis that there is a dynamic interplay between ecology and evolution within communities, yet researchers have not yet demonstrated convincingly whether, and under what circumstances, it is important for biologists to bridge community ecology and evolutionary biology. Answering this question will have important implications for both basic and applied problems in biology.  相似文献   

7.
Large eukaryotes support diverse communities of microbes on their surface—epibiota—that profoundly influence their biology. Alternate factors known to structure complex patterns of microbial diversity—host evolutionary history and ecology, environmental conditions and stochasticity—do not act independently and it is challenging to disentangle their relative effects. Here, we surveyed the epibiota from 38 sympatric seaweed species that span diverse clades and have convergent morphology, which strongly influences seaweed ecology. Host identity explains most of the variation in epibiont communities and deeper host phylogenetic relationships (e.g., genus level) explain a small but significant portion of epibiont community variation. Strikingly, epibiota community composition is significantly influenced by host morphology and epibiota richness increases with morphological complexity of the seaweed host. This effect is robust after controlling for phylogenetic non-independence and is strongest for crustose seaweeds. We experimentally validated the effect of host morphology by quantifying bacterial community assembly on latex sheets cut to resemble three seaweed morphologies. The patterns match those observed in our field survey. Thus, biodiversity increases with habitat complexity in host-associated microbial communities, mirroring patterns observed in animal communities. We suggest that host morphology and structural complexity are underexplored mechanisms structuring microbial communities.Subject terms: Microbial ecology, Biodiversity  相似文献   

8.
A phylogenetic test for adaptive convergence in rock-dwelling lizards   总被引:1,自引:0,他引:1  
Phenotypic similarity of species occupying similar habitats has long been taken as strong evidence of adaptation, but this approach implicitly assumes that similarity is evolutionarily derived. However, even derived similarities may not represent convergent adaptation if the similarities did not evolve as a result of the same selection pressures; an alternative possibility is that the similar features evolved for different reasons, but subsequently allowed the species to occupy the same habitat, in which case the convergent evolution of the same feature by species occupying similar habitats would be the result of exaptation. Many lizard lineages have evolved to occupy vertical rock surfaces, a habitat that places strong functional and ecological demands on lizards. We examined four clades in which species that use vertical rock surfaces exhibit long hindlimbs and flattened bodies. Morphological change on the phylogenetic branches leading to the rock-dwelling species in the four clades differed from change on other branches of the phylogeny; evolutionary transitions to rock-dwelling generally were associated with increases in limb length and decreases in head depth. Examination of particular characters revealed several different patterns of evolutionary change. Rock-dwelling lizards exhibited similarities in head depth as a result of both adaptation and exaptation. Moreover, even though rock-dwelling species generally had longer limbs than their close relatives, clade-level differences in limb length led to an overall lack of difference between rock- and non-rock-dwelling lizards. These results indicate that evolutionary change in the same direction in independent lineages does not necessarily produce convergence, and that the existence of similar advantageous structures among species independently occupying the same environment may not indicate adaptation.  相似文献   

9.
Species in similar habitats are often similar in morphology or behaviour, attributed to adaptation to similar environmental selection pressures, sometimes mediated by competitive interactions. For passerine songs, similarity of phenotype in identical habitats and character displacement have been documented, the former due to adaptation to the acoustics of the habitat, and the latter due to competition for acoustic space among species. If these phenomena are widespread, they should lead to community convergence of bird songs. Here, we test if passerine communities in similar habitats converge in song attributes or in acoustic differentiation among species. We compared the songs of European and North American Mediterranean climate passerine communities in open and closed habitats. Song frequency varied across different habitats but not continents. This was independent of both phylogeny and body size, indicating community convergence due to acoustic adaptation, rather than species sorting or similarity as a by-product of another type of ecological convergence. We found little evidence for regular spacing in song features among species, as would be expected if acoustic competition shapes within-community structure. However, for one of five song components, the open habitat communities showed a similar distribution of phenotypes on each continent. The proportion of interspecific variation in song explained by these effects was small. The fact that songs are complex signals that vary in many dimensions may explain why competition for acoustic space seems to be of small importance in structuring songs in these passerine communities.  相似文献   

10.
As ecology and evolution become ever more entwined, many areas of ecological theory are being re‐examined. Eco‐evolutionary analyses of classic coexistence mechanisms are yielding new insights into the structure and stability of communities. We examine fluctuation‐dependent coexistence models, identifying communities that are both ecologically and evolutionarily stable. Members of these communities possess distinct environmental preferences, revealing widespread patterns of limiting similarity. This regularity leads to consistent changes in the structure of communities across fluctuation regimes. However, at high amplitudes, subtle differences in the form of fluctuations dramatically affect the collapse of communities. We also show that identical fluctuations can support multiple evolutionarily stable communities – a novel example of alternative stable states within eco‐evolutionary systems. Consequently, the configuration of communities will depend on historical contingencies, including details of the adaptive process. Integrating evolution into the study of coexistence offers new insights, while enriching our understanding of ecology.  相似文献   

11.
1. Understanding factors that regulate the assembly of communities is a main focus of ecology. Human‐engineered habitats, such as reservoirs, may provide insight into these assembly processes because they represent novel habitats that are subjected to colonization by fishes from the surrounding river basin or transported by humans. By contrasting community similarity within and among reservoirs from different drainage basins to nearby stream communities, we can test the relative constraints of reservoir habitats and regional species pools in determining species composition of reservoirs. 2. We used a large spatial database that included intensive collections from 143 stream and 28 reservoir sites within three major river basins in the Great Plains, U.S.A., to compare patterns of species diversity and community structure between streams and reservoirs and to characterize variation in fish community structure within and among major drainage basins. We expected reservoir fish faunas to reflect the regional species pool, but would be more homogeneous that stream communities because similar species are stocked and thrive in reservoirs (e.g. planktivores and piscivores), and they lack obligate stream organisms that are not shared among regional species pools. 3. We found that fish communities from reservoirs were a subset of fishes collected from streams and dominant taxa had ecological traits that would be favoured in lentic environments. Although there were regional differences in reservoir fish communities, species richness, patterns of rank abundance and community structure in reservoir communities were more homogonous across three major drainage basins than for stream communities. 4. The general pattern of convergence of reservoir fish community structure suggests their assembly is constrained by local factors such as habitat and biotic interactions, and facilitated by the introduction of species among basins. Because there is a reciprocal transfer of biota between reservoirs and streams, understanding factors structuring both habitats is necessary to evaluate the long‐term dynamics of impounded river networks.  相似文献   

12.
Aim To quantify how mammal community structure relates to heterogeneity of vegetation for palaeoecological reconstructions, and to test whether historical or environmental factors are more important in structuring communities. Location Sixty‐three natural protected areas in Asia, Africa and South and Central America. Methods We defined faunal communities by allocating species to ecological guilds and calculating proportional representation within each guild. Vegetation heterogeneity for each natural protected area was calculated from satellite images. The relationship between these ecospaces was calculated using canonical correlations analysis, redundancy analysis and principal components analysis. We expected that large, herbivorous mammals would be most strongly correlated with open areas. Convergence was tested by independently eliminating the effects of geography and vegetation heterogeneity on the structure of the mammal communities. We expected that vegetation would more strongly structure communities than geographical position. Results We show that the guild structure of communities across habitats is significantly correlated with vegetation heterogeneity. The highest correlation was between small, scansorial‐arboreal secondary consumers and heavy tree cover. The first convergence analysis shows American communities distinguished from Asian and African communities; these latter communities show a remarkable convergence in structure. Historical factors only affected the continent whose mammals had experienced a long period of isolation. The second convergence analysis shows that almost all biomes have the same or very similar community structure regardless of continent. Main conclusions Communities from the same environments in different continents showed remarkable convergence. Communities from the same continents only converged when those continents shared a recent geological and biological history. These results suggest that historical and environmental factors are operating over different timescales. This study confirms that environmental reconstructions made on the basis of whole communities will accurately reflect the environment that the community lived in. However, reconstructions made for fossil sites in deep time need to take historical factors into consideration. Small, arboreal and scansorial secondary consumers show the strongest correlation with vegetation, correlating with continuous tree canopy cover. This relationship allows simple reconstructions of the amount of tree cover occurring in a landscape from the proportion of species from the community falling in this ecological guild.  相似文献   

13.
Recent progress in the development of phylogenetic methods and access to molecular phylogenies has made comparative biology more popular than ever before. However, determining cause and effect in phylogenetic comparative studies is inherently difficult without experimentation and evolutionary replication. Here, we provide a roadmap for linking comparative phylogenetic patterns with ecological experiments to test causal hypotheses across ecological and evolutionary scales. As examples, we consider five cornerstones of ecological and evolutionary research: tests of adaptation, tradeoffs and synergisms among traits, coevolution due to species interactions, trait influences on lineage diversification, and community assembly and composition. Although several scenarios can result in a lack of concordance between historical patterns and contemporary experiments, we argue that the coupling of phylogenetic and experimental methods is an increasingly revealing approach to hypothesis testing in evolutionary ecology.  相似文献   

14.
Unisexual vertebrates typically form through hybridization events between sexual species in which reproductive mode transitions occur in the hybrid offspring. This evolutionary history is thought to have important consequences for the ecology of unisexual lineages and their interactions with congeners in natural communities. However, these consequences have proven challenging to study owing to uncertainty about patterns of population genetic diversity in unisexual lineages. Of particular interest is resolving the contribution of historical hybridization events versus post formational mutation to patterns of genetic diversity in nature. Here we use restriction site associated DNA genotyping to evaluate genetic diversity and demographic history in Aspidoscelis laredoensis, a diploid unisexual lizard species from the vicinity of the Rio Grande River in southern Texas and northern Mexico. The sexual progenitor species from which one or more lineages are derived also occur in the Rio Grande Valley region, although patterns of distribution across individual sites are quite variable. Results from population genetic and phylogenetic analyses resolved the major axes of genetic variation in this species and highlight how these match predictions based on historical patterns of hybridization. We also found discordance between results of demographic modelling using different statistical approaches with the genomic data. We discuss these insights within the context of the ecological and evolutionary mechanisms that generate and maintain lineage diversity in unisexual species. As one of the most dynamic, intriguing, and geographically well investigated groups of whiptail lizards, these species hold substantial promise for future studies on the constraints of diversification in unisexual vertebrates.  相似文献   

15.
There is increasing evidence that interspecific competition has set important constraints on the distribution, abundance and evolution of island lizards. This is surprising not because competition is rare but because for a biogeographic pattern caused by species interactions to be detectable, it must be strong enough to override the many physical and historical differences that exist among real islands. Moreover, the direct pairwise links between species, once embedded in the complicated network of species interactions in entire communities, may become diluted and confused by the indirect interactions of still other species, particularly predators. Nevertheless, if competition is strong and if communities are simple (as they are on many species-poor islands), competition leaves its fingerprint on the ecological and evolutionary trajectories taken by island lizards.  相似文献   

16.
Abstract Despite its importance to evolutionary theory, convergence remains an understudied phenomenon and is usually investigated using qualitative data. This paper advances a new, multidimensional view of convergence. Three patterns indicative of convergence are discussed, and techniques to discover and test convergent patterns in a quantitative framework are developed. These concepts and methods are applied to a dataset of digitized coordinates on 1554 lizard skulls and 1292 lower jaws to test hypotheses of convergence among herbivorous lizards. Encompassing seven independent acquisitions of herbivory, this lizard sample provides an ideal natural experiment for exploring ideas of convergence among different systems (here, morphological and functional). Three related questions are addressed: (1) Do herbivorous lizards show evidence of convergence in skull and lower jaw morphology? (2) What, if any, is the morphospace pattern associated with this convergence? (3) Is it possible to predict the direction of convergence using functional models? Relative warp analysis and permutation tests reveal that the skulls and lower jaws of herbivorous lizards do show evidence of convergence. Herbivore skulls deviate from their carnivorous or omnivorous sister groups toward the same area of morphospace. Without a phylogenetic perspective, this pattern would not be recognizable. Lower jaws of herbivores are not convergent in morphology but are convergent in function: herbivores deviate away from their carnivorous sister groups toward higher values of mechanical advantage. These results illustrate the desirability of quantitative methods, informed by phylogenetic information, in the study of convergence.  相似文献   

17.
Community ecology entered the 1970s with the belief that niche theory would supply a general theory of community structure. The lack of wide-spread empirical support for niche theory led to a focus on models specific to classes of communities such as lakes, intertidal communities, and forests. Today, the needs of conservation biology for metrics of “ecological health” that can be applied across types of communities prompts a renewed interest in the possibility of general theory for community ecology. Disputes about the existence of general patterns in community structure trace at least to the 1920s and continue today almost unchanged in concept, although now expressed through mathematical modeling. Yet, a new framework emerged in the 1980s from findings that community composition and structure depend as much on the processes that bring species to the boundaries of a community as by processes internal to a community, such as species interactions and co-evolution. This perspective, termed “supply-side ecology”, argued that community ecology was to be viewed as an “organic earth science” more than as a biological science. The absence of a general theory of the earth would then imply a corresponding absence of any general theory for the communities on the earth, and imply that the logical structure of theoretical community ecology would consist of an atlas of models special to place and geologic time. Nonetheless, a general theory of community ecology is possible similar in form to the general theory for evolution if the processes that bring species to the boundary of a community are analogized to mutation, and the processes that act on the species that arrive at a community are analogized to selection. All communities then share some version of this common narrative, permitting general theorems to be developed pertaining to all ecological communities. Still, the desirability of a general theory of community ecology is debatable because the existence of a general theory suppresses diversity of thought even as it allows generalizations to be derived. The pros and cons of a general theory need further discussion.  相似文献   

18.
Vertebrate developmental biologists typically rely on a limited number of model organisms to understand the evolutionary bases of morphological change. Unfortunately, a typical model system for squamates (lizards and snakes) has not yet been developed leaving many fundamental questions about morphological evolution unaddressed. New model systems would ideally include clades, rather than single species, that are amenable to both laboratory studies of development and field-based analyses of ecology and evolution. Combining an understanding of development with an understanding of ecology and evolution within and between closely related species has the potential to create a seamless understanding of how genetic variation underlies ecologically and evolutionarily relevant variation within populations and between species. Here we briefly introduce a new model system for the integration of development, evolution, and ecology, the lizard genus Anolis, a diverse group of lizards whose ecology and evolution is well understood, and whose genome has recently been sequenced. We present a developmental staging series for Anolis lizards that can act as a baseline for later comparative and experimental studies within this genus.  相似文献   

19.
Plant adaptations to the environment are limited, and therefore plants in similar environments may display similar functional and physiological traits, a pattern termed functional convergence. Evidence was examined for functional convergence among 28 evergreen woody shrubs from three plant communities of the semi-arid winter rainfall region of southern California. Both leaf and water relations traits were examined, including seasonal stomatal conductance (gs), specific leaf area (SLA), leaf specific conductivity (Kl), seasonal water potential (Psi w), stem cavitation resistance (Psi 50), and xylem density. Species display community-specific suites of xylem and leaf traits consistent with different patterns of water use among communities, with coastal sage scrub species utilizing shallow pulses of water, Mojave Desert scrub species relying on deeper water reserves, and chaparral species utilizing both shallow and deep moisture reserves. Communities displayed similar degrees of water stress, with a community-level minimum Psi w (Psi wmin) of c. -4.6 Mpa, similar to other arid communities. Pooled across sites, there was a strong correlation between Psi wmin and xylem density, suggesting that these traits are broadly related and predictive of one another. This comparative community physiology approach may be useful in testing hypotheses of functional convergence across structurally similar semi-arid communities.  相似文献   

20.
Many clades contain ecologically and phenotypically similar species across continents, yet the processes generating this similarity are largely unstudied, leaving fundamental questions unanswered. Is similarity in morphology and performance across assemblages caused by evolutionary convergence or by biogeographic dispersal of evolutionarily conserved ecotypes? Does convergence to new ecological conditions erase evidence of past adaptation? Here, we analyse ecology, morphology and performance in frog assemblages from three continents (Asia, Australia and South America), assessing the importance of dispersal and convergent evolution in explaining similarity across regions. We find three striking results. First, species using the same microhabitat type are highly similar in morphology and performance across both clades and continents. Second, some species on different continents owe their similarity to dispersal and evolutionary conservatism (rather than evolutionary convergence), even over vast temporal and spatial scales. Third, in one case, an ecologically specialized ancestor radiated into diverse ecotypes that have converged with those on other continents, largely erasing traces of past adaptation to their ancestral ecology. Overall, our study highlights the roles of both evolutionary conservatism and convergence in explaining similarity in species traits over large spatial and temporal scales and demonstrates a statistical framework for addressing these questions in other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号