首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tissue plasminogen activator (t-PA) is an important initiator of fibrinolysis. The t-PA polypeptide has four potential N-glycosylation sites of which three are occupied in type I (Asn-117, -184, and -448) and two in type II (Asn-117 and -448). In an effort to elucidate the factors controlling the expression of N-linked oligosaccharides on this polypeptide, we have used a combination of sequential exoglycosidase digestion, methylation analysis, and controlled acetolysis to determine the oligosaccharide structures at each of the N-glycosylation sites of type I and type II t-PA when isolated from a human colon fibroblast cell strain and from a Bowes melanoma cell line. Our results suggest the following: (i) type I and type II t-PA are N-glycosylated in an identical way at Asn-117 and Asn-448, when isolated from the same cell line; (ii) Asn-117 is predominantly associated with oligomannose-type structures in all cases; (iii) Asn-184 and Asn-448 are predominantly associated with complex-type structures when t-PA is isolated from fibroblast cells, but with both complex- and oligomannose-type structures when isolated from melanoma cells; (iv) fibroblast cell derived t-PA is associated with both neutral and sialylated oligosaccharides, while melanoma cell derived t-PA is also associated with sulfated oligosaccharides, which are located exclusively at Asn-448 of type II t-PA; (v) no complex-type structures occur in common between t-PA from the two cell lines. These results indicate that the t-PA glycoprotein is secreted by each cell line as a set of glycoforms, each glycoform being unique with respect to the nature and disposition of oligosaccharides on a common polypeptide. Further, the two cell lines express no glycoform in common, despite expressing the same t-PA polypeptide. The implications of these results for both the control of oligosaccharide processing in different cell lines and the genetic engineering of mammalian glycoproteins are discussed.  相似文献   

2.
Recombinant human tissue plasminogen activator (rt-PA), produced by expression in Chinese hamster ovary cells, is a fibrin-specific plasminogen activator which has been approved for clinical use in the treatment of myocardial infarction. In this study, the structures of the Asn-linked oligosaccharides of Chinese hamster ovary-expressed rt-PA have been elucidated. High mannose and hybrid oligosaccharides were released from the protein by endoglycosidase H digestion, whereas N-acetyllactosamine-type ("complex") oligosaccharides were released by peptide:N-glycosidase F digestion. The oligosaccharides were fractionated by gel permeation chromatography and anion exchange high performance liquid chromatography (HPLC), and their structures were analyzed by composition and methylation analysis, high pH anion exchange chromatography, fast atom bombardment-mass spectrometry (FAB-MS), and 500-MHz 1H NMR spectroscopy. High mannose oligosaccharides were found to account for 38% of the total carbohydrate content of rt-PA and consisted of Man5GlcNAc2, Man6GlcNAc2, and Man7GlcNAc2 in the ratio 1.8:1.7:1. Two hybrid oligosaccharides were identified and accounted for 3% of the carbohydrate of rt-PA. The N-acetyllactosamine-type oligosaccharides were found to comprise diantennary (34% of total carbohydrate), 2,4-branched triantennary (11%), 2,6-branched triantennary (9%), and tetraantennary (5%) structures. Sialylation of these oligosaccharides was by alpha (2----3) linkages to galactose. Most (greater than 90%) of the N-acetyllactosamine-type structures contained fucose alpha (1----6) linked to the Asn-linked N-acetylglucosamine residue. The distribution of oligosaccharide structures at individual glycosylation sites (Asn residues 117, 184, and 448) was also determined. rt-PA exists as two variants that differ by the presence (type I) or absence (type II) of carbohydrate at Asn-184. Tryptic glycopeptides were isolated by reversed phase high performance liquid chromatography and treated with peptide:N-glycosidase F. The oligosaccharides released from each glycosylation site were analyzed by high pH anion exchange chromatography. By this analysis, Asn-117 was demonstrated to carry exclusively high mannose oligosaccharides. When glycosylated, Asn-184 carried diantennary, 2,4-branched triantennary, 2,6-branched triantennary, and tetraantennary N- acetyllactosamine oligosaccharides in the ratio 9.0:4.5:1.4:1. Asn- 448 carried the same types of oligosaccharides, but in the ratio 7.5:1.6:2.1:1. The distributions of Asn-linked oligosaccharides at positions 117 and 448 were found not to be affected by the presence or absence of carbohydrate at position 184. The relevance of the  相似文献   

3.
Papac  DI; Briggs  JB; Chin  ET; Jones  AJ 《Glycobiology》1998,8(5):445-454
This report describes a convenient method for the rapid and efficient release of N-linked oligosaccharides from low microgram amounts of glycoproteins. A 96-well MultiScreen assay system containing a polyvinylidene difluoride (PVDF) membrane is employed to immobilize glycoproteins for subsequent enzymatic deglycosylation. Recombinant tissue-type plasminogen activator (rt-PA) is used to demonstrate the deglycosylation of 0.1-50 micrograms of a glycoprotein. This method enabled the recovery of a sufficient amount of N-linked oligosaccharides released enzymatically with peptide N-glycosidase F (PNGaseF) from as little as 0.5 microgram rt-PA for subsequent analysis by matrix-assisted laser desorption/ionization time-of-flight (MALDI- TOF) mass spectrometry. The immobilization of rt-PA to the PVDF membrane did not sterically inhibit the PNGaseF-mediated release of oligosaccharides from rt-PA as determined by tryptic mapping experiments. Comparison of the oligosaccharides released from 50 micrograms of rt-PA by either the 96-well plate method or by a standard solution digestion procedure showed no significant differences in the profiles obtained by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Both neutral and sialylated oligosaccharide standards spiked into wells were recovered equally as determined by HPAEC-PAD. One advantage of this approach is that reduction and alkylation can be performed on submicrogram amounts of glycoproteins with easy removal of reagents prior to PNGaseF digestion. In addition, this method allows 60 glycoprotein samples to be deglycosylated in 1 day with MALDI-TOF or HPAEC-PAD analysis being performed on the following day.   相似文献   

4.
To probe the effects of N-glycosylation on the fibrin-dependent plasminogenolytic activity of tissue-type plasminogen activator (t-PA), we have expressed a human recombinant t-PA (rt-PA) gene in Chinese hamster ovary (CHO) cells and in a murine C127 cell line. The resulting rt-PA glycoproteins were isolated and their associated N-linked oligosaccharide structures determined by using a combination of high-resolution Bio-Gel P-4 gel filtration chromatography, sequential exoglycosidase digestion, and methylation analysis. The results show that CHO rt-PA is N-glycosylated differently from murine C127 derived rt-PA. Further, both rt-PA's are N-glycosylated differently from t-PA derived from a human colon fibroblast and the Bowes melanoma cell line (Parekh et al., 1989), confirming that N-glycosylation of the human t-PA polypeptide is cell-type-specific. Both CHO and murine rt-PA were fractionated on lysine-Sepharose chromatography. The N-glycosylation of the major forms was analyzed and their fibrin-dependent plasminogenolytic activity determined by using an indirect amidolytic assay with Glu-plasminogen and a chromogenic plasmin substrate. The results suggest that the various forms of rt-PA differ from one another with respect to the kinetics of their fibrin-dependent activation of plasminogen. Together, these data support the notion (Wittwer et al., 1989) that N-glycosylation influences the fibrin-dependent catalytic activity of t-PA and that t-PA when expressed in different cell lines may consist of kinetically and structurally distinct glycoforms.  相似文献   

5.
Mammalian brains contain relatively high amounts of common and uncommon sialylated N-glycan structures. Sialic acid linkages were identified for voltage-gated potassium channels, Kv3.1, 3.3, 3.4, 1.1, 1.2 and 1.4, by evaluating their electrophoretic migration patterns in adult rat brain membranes digested with various glycosidases. Additionally, their electrophoretic migration patterns were compared with those of NCAM (neural cell adhesion molecule), transferrin and the Kv3.1 protein heterologously expressed in B35 neuroblastoma cells. Metabolic labelling of the carbohydrates combined with glycosidase digestion reactions were utilized to show that the N-glycan of recombinant Kv3.1 protein was capped with an oligo/poly-sialyl unit. All three brain Kv3 glycoproteins, like NCAM, were terminated with alpha2,3-linked sialyl residues, as well as atypical alpha2,8-linked sialyl residues. Additionally, at least one of their antennae was terminated with an oligo/poly-sialyl unit, similar to recombinant Kv3.1 and NCAM. In contrast, brain Kv1 glycoproteins consisted of sialyl residues with alpha2,8-linkage, as well as sialyl residues linked to internal carbohydrate residues of the carbohydrate chains of the N-glycans. This type of linkage was also supported for Kv3 glycoproteins. To date, such a sialyl linkage has only been identified in gangliosides, not N-linked glycoproteins. We conclude that all six Kv channels (voltage-gated K+ channels) contribute to the alpha2,8-linked sialylated N-glycan pool in mammalian brain and furthermore that their N-glycan structures contain branched sialyl residues. Identification of these novel and unique sialylated N-glycan structures implicate a connection between potassium channel activity and atypical sialylated N-glycans in modulating and fine-tuning the excitable properties of neurons in the nervous system.  相似文献   

6.
N- and O-linked oligosaccharides on pro-opiomelanocortin both bear the unique terminal sequence SO(4)-4-GalNAcβ1,4GlcNAcβ. We previously demonstrated that protein-specific transfer of GalNAc to N-linked oligosaccharides on glycoprotein substrates is dependent on the presence of both an oligosaccharide acceptor and a peptide recognition motif consisting of a cluster of basic amino acids. We characterized how two β1,4-N-acetylgalactosaminyltransferases, β4GalNAc-T3 and β4GalNAc-T4, require the presence of both the peptide recognition motif and the N-linked oligosaccharide acceptors to transfer GalNAc in β1,4-linkage to GlcNAc in vivo and in vitro. We now show that β4GalNAc-T3 and β4GalNAc-T4 are able to utilize the same peptide motif to selectively add GalNAc to β1,6-linked GlcNAc in core 2 O-linked oligosaccharide structures to form Galβ1,3(GalNAcβ1,4GlcNAcβ1,6)GalNAcαSer/Thr. The β1,4-linked GalNAc can be further modified with 4-linked sulfate by either GalNAc-4-sulfotransferase 1 (GalNAc-4-ST1) (CHST8) or GalNAc-4-ST2 (CHST9) or with α2,6-linked N-acetylneuraminic acid by α2,6-sialyltransferase 1 (ST6Gal1), thus generating a family of unique GalNAcβ1,4GlcNAcβ (LacdiNAc)-containing structures on specific glycoproteins.  相似文献   

7.
Luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) from pituitary and chorionic gonadotropin (CG) from placenta are a family of closely related glycoproteins. Each hormone is a heterodimer, consisting of an alpha- and a beta-subunit. Within an animal species, the alpha-subunits of all four glyco-protein hormones have an identical amino acid sequence, whereas each beta-subunit is distinct and confers hormone-specific features to the heterodimer. LH and FSH are synthesized within the same cell, the gonadotroph of the anterior pituitary, but are predominantly stored in separate secretory granules. We have characterized the asparagine-linked oligosaccharides on bovine, ovine and human LH, FSH and TSH. The various pituitary hormones were found to contain unique sulfated oligosaccharides with the terminal sequence SO4-4GalNAc beta 1----4GlcNAc beta 1----2Man alpha, sialylated oligosaccharides with the terminal sequence SA alpha Gal beta GlcNAc beta Man alpha, or both sulfated and sialylated structures. Despite synthesis of LH and FSH in the same pituitary cell, sulfated oligosaccharides predominate on LH while sialylated oligosaccharides predominate on FSH for all three animal species. We have examined the reactions leading to synthesis of the sulfated oligosaccharides to determine which steps are hormone specific. The sulfotransferase is oligosaccharide specific, requiring only the sequence GalNAc beta 1----4GlcNAc beta 1----2Man alpha. In contrast, the GalNAc-transferase appears to be protein specific, accounting for the preferential addition of GalNAc to LH, TSH, and free (uncombined) alpha-subunits compared with FSH and other pituitary glycoproteins. The predominance of sulfated oligosaccharide structures on LH may account for sorting of LH and FSH into separate secretory granules. Differences in sulfation and sialylation of LH, FSH and TSH may also play a role in the regulation of hormone bioactivity.  相似文献   

8.
Hamster sarcoma virus (HSV) transformation of Nil-8 fibroblasts is associated with an increase in the average size of N-acetyllactosamine (complex) type N-linked glycans due to an increase in both the average number of branches/chain and in the fraction of N-linked glycans containing poly(GlcNAc(beta 1,3) Gal-(beta 1,4)) (polylactosaminylglycan) chains. Analysis of glycopeptides from the envelope glycoproteins of Sindbis virus and vesicular stomatitis virus (VSV) grown in Nil-8 and Nil/HSV cells indicated that the transformation-associated shift to larger N-linked oligosaccharides selectively affects some glycosylation sites far more than others. Glycosylation of the Sindbis virus glycoproteins and of Asn-179 of VSV G was similar in Nil-8 and Nil/HSV cells; oligosaccharide processing generally did not proceed beyond the biantennary complex stage. In contrast, Asn-336 of VSV G carried primarily biantennary complex glycans in Nil-8-grown virus (ratio, triantennary, and larger to biantennary complex glycans (tri+/bi) = 0.5) but more highly branched structures in Nil/HSV-grown virus (tri+/bi = 8.1). All of the triantennary or larger oligosaccharides from Asn-336 of Nil/HSV-grown VSV G bound to leukoagglutinating phytohemagglutinin-agarose, indicating the presence of a branch attached to the Man3GlcNAc2 core via a beta 1,6-linked GlcNAc residue and suggesting that increased UDP-GlcNAc:alpha-D-mannoside beta 1,6-N-acetylglucosaminyl transferase V (GlcNAc transferase V) activity accompanied transformation. At least 20% of these leukoagglutinating phytohemagglutinin-binding oligosaccharides were sensitive to an enzyme specific for polylactosaminylglycan chains, Escherichia freundii endo-beta-galactosidase.  相似文献   

9.
We have engineered two Chinese hamster ovary cell lines secreting different recombinant glycoproteins to express high levels of human beta1,4-galactosyltransferase (GT, E.C. 2.4.1.38) and/or alpha2, 3-sialyltransferase (ST, E.C. 2.4.99.6). N-linked oligosaccharide structures synthesized by cells overexpressing the glycosyltransferases showed greater homogeneity compared with control cell lines. When GT was overexpressed, oligosaccharides terminating with GlcNAc were significantly reduced compared with controls, whereas overexpression of ST resulted in sialylation of >/=90% of available branches. As expected, GT overexpression resulted in reduction of oligosaccharides terminating with GlcNAc, whereas overexpression of ST resulted in sialylation of >/=90% of available branches. The more highly sialylated glycoproteins had a significantly longer mean residence time in a rabbit model of pharmacokinetics. These experiments demonstrate the feasibility of genetically engineering cell lines to produce therapeutics with desired glycosylation patterns.  相似文献   

10.
Mass spectrometric studies on the N-linked glycans of aminopeptidase 1 from Manduca sexta have revealed unusual structures not previously observed on any insect glycoprotein. Structure elucidation of these oligosaccharides was carried out by high-energy collision-induced dissociation (CID) using a matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) tandem mass spectrometer. These key experiments revealed that three out of the four N-linked glycosylation sites in this protein (Asn295, Asn623 and Asn752) are occupied with highly fucosylated N-glycans that possess unusual difucosylated cores. Cross-ring fragment ions and 'internal' fragment ions observed in the CID spectra, showed that these fucoses are found at the 3-position of proximal GlcNAc and at the 3-position of distal GlcNAc in the chitobiose unit. The latter substitution has only been previously observed in nematodes. In addition, these core structures can be decorated with novel fucosylated antennae composed of Fucalpha(1-3)GlcNAc. Key fragment ions revealed that these antennae are predominantly found on the upper 6-arm of the core mannose. The paucimannosidic N-glycan (Man(3)GlcNAc(2)), commonly found on other insect glycoproteins, is the predominant oligosaccharide found at the remaining N-glycosylation site (Asn609).  相似文献   

11.
Wang Y  Wu SL  Hancock WS 《Glycobiology》2006,16(6):514-523
In this publication, we will describe the combination of lectin affinity chromatography with nano high performance liquid chromatography (HPLC) coupled to a linear ion trap Fourier transform mass spectrometer (capillary LC-LTQ/FTMS) to characterize N-linked glycosylation structures in human plasma proteins. We used a well-characterized glycoprotein, tissue plasminogen activator (rt-PA), which is present at low levels in blood, as a standard to determine the dynamic range of this approach. N-linked glycopeptides derived from rt-PA could be characterized at a ratio of 1:200 in human plasma (rtPA: total plasma protein, w/w) by accurate mass measurement in the FTMS and fragmentation (MS(n)) in the linear ion trap. We demonstrated that this platform has the potential to characterize the general N-linked glycosylation structures of abundant glycoproteins present in human plasma without the requirement for antibody-based purification, or additional carbohydrate analytical protocols. This conclusion was supported by the determination of carbohydrate structures for three glycoproteins, IgG, haptoglobin, and alpha-1-acid glycoprotein, at their natural levels in a human plasma sample, but only after the lectin enrichment step.  相似文献   

12.
Urine from Sd(a+) individuals was found to contain a beta-N-acetylgalactosaminyltransferase that transfers N-acetylgalactosamine (GalNAc) from UDP-GalNAc to 3'-sialyllactose and glycoproteins carrying the terminal NeuAc alpha-3Gal beta group. This enzyme has been purified 174-fold by affinity chromatography on Blue Sepharose and DEAE-Sephacel chromatography in a yield of 33%. Neither endogenous incorporation nor sugar nucleotide degrading enzymes were found in the purified preparation. The transferase had a pH optimum of pH 7.5 and a requirement for Mn2+ but not for detergents. The Km for UDP-GalNAc was 66 X 10(-6) M, using fetuin as an acceptor. Like beta-GalNAc-transferase from other sources the urinary enzyme had a strict requirement for sialylated acceptors. On the basis of enzymatic and chemical treatment of the product obtained by the transfer of [3H]GalNAc to 3'-sialyllactose, we propose that the enzyme attaches GalNAc in beta-anomeric configuration to O-4 of the galactose residue that is substituted at O-3 by sialic acid. A preparation of Tamm-Horsfall glycoprotein from a Sd(a-) donor lacking beta-GalNAc was found to be the best acceptor among the glycoproteins tested. Studies on the transferase activity toward fetuin, human chorionic gonadotropin, and glycophorin A indicated that the enzyme preferentially adds the sugar to the sialylated terminal end of N-linked oligosaccharides. Unlike the beta-GalNAc-transferase bound to human kidney microsomes (F. Piller et al. (1986) Carbohydr. Res. 149, 171-184) the urinary transferase is able to transfer beta-GalNAc to the NeuAc alpha-3Gal beta-3(NeuAc alpha-6)GalNAc chains bound to the native glycophorin.  相似文献   

13.
The effect of altering oligosaccharide structures at sites 184 and 448 of tissue plasminogen activator (tPA) has been examined. Alteration to high-mannose forms at sites 184 and 448 was accomplished by the growth of cells in the presence of deoxymannojirimycin (dMM). Modification to neutral, unsialylated forms at these sites was achieved by neuraminidase treatment of control preparations of tPA. Oligosaccharides at site 117 were not markedly affected by either treatment because structures at this site are high-mannose and not sialylated in untreated preparations. The effect on enzymatic activity and on a related property, lysine affinity, was determined. dMM treatment was found to increase both the lysine affinity and catalytic activity of tPA. Neuraminidase treatment increased enzyme activity, but was without effect on affinity for lysine. To evaluate the effects of alterations at site 184 and site 448, the catalytic activity and lysine affinity of type I and type II tPA were monitored individually. In the dMM-treated sample, type I tPA (with sugars at sites 117, 184 and 448) was found to have 2- to 3-fold increased catalytic activity and an affinity for lysine which was greater than that of type I from untreated preparations, but less than that of control type II tPA (containing sugar only at sites 117 and 448). In neuraminidase-treated type I, catalytic activity was also enhanced but lysine affinity remained unchanged. Type II from dMM- and neuraminidase-treated preparations had catalytic activity that was increased approximately 1.5-fold compared to untreated controls, whereas affinity for lysine was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In this paper, we describe the combination of lectin chromatography with capillary LC coupled to a linear ion trap-Fourier transform mass spectrometer (LTQ/FTMS) to enrich and characterize overexpressed glycoproteins from a cell culture lysate. A well-characterized glycoprotein, recombinant tissue plasminogen activator (rt-PA), was used as a standard, and we demonstrated that the three N-linked glycopeptides (including glycan structures) present in a tryptic digest of the rt-PA standard could be characterized in the new hybrid MS platform. A feature of this approach is that a significant amount of information can be obtained about the carbohydrate structures by direct analysis of the tryptic digest without the need for additional time-consuming sample preparation protocols. A combination of lectins was then studied for improved recovery of captured glycopeptides and was related to the selectivity of different lectins for specific glycosylation motifs. This approach was then extended to the lysate of a cell line routinely used in biotechnology manufacture (Chinese hamster ovary, CHO). This study showed that the combinations of lectins could enrich glycoproteins significantly from a CHO cell lysate. We also demonstrated that with this level of enrichment and with the new hybrid mass spectrometer, we could study the structures of N-linked glycopeptides of rt-PA present in a crude CHO cell lysate, at a ratio of 1:200 (rtPA:total cell lysate protein, w/w) by accurate mass measurement in the FTMS and tandem MSn in the linear ion trap. The generic and high throughput nature of the lectin approach combined with the ability to directly analyze the glycan structures in the tryptic digest suggest that this platform has the potential to routinely monitor glycoprotein products at early stage manufacturing in the biotech industry.  相似文献   

15.
Glycoproteins often display a complex isoelectric focusing profile because of the presence of negatively charged carbohydrates, such as sialic acid, phosphorylated mannose, and sulfated GalNAc. Until now, understanding the role of these charged carbohydrates in determining the isoelectric focusing profile has been limited to observing pattern shifts following complete removal of the sugars in question. We have developed a simple and sensitive method for analyzing N-linked oligosaccharides from the individual isoelectric focusing bands of a glycoprotein using recombinant human thyroid-stimulating hormone as a model system. N-linked oligosaccharides were released and profiled from individual bands following electroblotting of isoelectric focusing gels. As might be predicted, high-pH anion-exchange chromatography-pulsed amperometric detection and matrix-assisted laser desorption/ionization-time of flight analyses indicated that the bands that migrated closer to the positive electrode contained more sialylated N-linked oligosaccharides. The sialic acid content of these bands correlated with that predicted from the corresponding oligosaccharide analyses.  相似文献   

16.
Labeling of released asparagine-linked (N-linked) oligosaccharides from glycoproteins is commonly performed to aid in the separation and detection of the oligosaccharide. Of the many available oligosaccharide labels, 2-amino benzamide (2-AB) is a popular choice for providing a fluorescent product. The derivatization conditions can potentially lead to oligosaccharide desialylation. This work evaluated the extent of sialic acid loss during 2-AB labeling of N-linked oligosaccharides released from bovine fetuin, polyclonal human serum immunoglobulin G (IgG), and human α1-acid glycoprotein (AGP) as well as of sialylated oligosaccharide reference standards and found that for more highly sialylated oligosaccharides the loss is greater than the <2% value commonly cited. Manufacturers of glycoprotein biotherapeutics need to produce products with a consistent state of sialylation and, therefore, require an accurate assessment of glycoprotein sialylation.  相似文献   

17.
Kulakosky  PC; Hughes  PR; Wood  HA 《Glycobiology》1998,8(7):741-745
The potential of insect cell cultures and larvae infected with recombinant baculoviruses to produce authentic recombinant glycoproteins cloned from mammalian sources was investigated. A comparison was made of the N-linked glycans attached to secreted alkaline phosphatase (SEAP) produced in four species of insect larvae and their derived cell lines plus one additional insect cell line and larvae of one additional species. These data survey N-linked oligosaccharides produced in four families and six genera of the order Lepidoptera. Recombinant SEAP expressed by recombinant isolates of Autographa californica and Bombyx mori nucleopolyhedroviruses was purified from cell culture medium, larval hemolymph or larval homogenates by phosphate affinity chromatography. The N-linked oligosaccharides were released with PNGase-F, labeled with 8- aminonaphthalene-1-3-6-trisulfonic acid, fractionated by polyacrylamide gel electrophoresis, and analyzed by fluorescence imaging. The oligosaccharide structures were confirmed with exoglycosidase digestions. Recombinant SEAP produced in cell lines of Lymantria dispar (IPLB-LdEIta), Heliothis virescens (IPLB-HvT1), and Bombyx mori (BmN) and larvae of Spodoptera frugiperda, Trichoplusia ni , H.virescens , B.mori , and Danaus plexippus contained oligosaccharides that were structurally identical to the 10 oligosaccharides attached to SEAP produced in T.ni cell lines. The oligosaccharide structures were all mannose-terminated. Structures containing two or three mannose residues, with and without core fucosylation, constituted more than 75% of the oligosaccharides from the cell culture and larval samples.   相似文献   

18.
Human leukocyte receptor IIIa (hFcγRIIIa) plays a prominent role in the elimination of tumor cells by antibody-based cancer therapies. In previous studies, a major impact of the presence of carbohydrates at Asn-162 on the binding between the receptor and the Fc part of wild type fucosylated or glycoengineered nonfucosylated antibodies has been shown. In this study, we performed a site directed carbohydrate analysis at hFcγRIIIa derived from human embryonic kidney (HEK) and Chinese hamster ovary (CHO) cells, respectively. Using mass spectrometry (MS) and a multienzyme protein digest, we analyzed the proteolysis-generated glycopeptides in detail. We could show that hFcγRIIIa expressed by HEK cells was mostly bearing multifucosylated biantennary Asn162-glycans with a major fraction terminating with GalNAc residues replacing the more common Gal. We could demonstrate that the glycan antennae with terminal GalNAc could be sialylated as indicated by a novel reporter ion HexNAcHexNAcNeuAc(+) (m/z 698.28) using a source induced dissociation (SID) scan in the MS cycle. In contrast to the hFcγRIIIa Asn-162 glycosylation pattern from HEK cells, the CHO cells derived receptor contains bi- and triantennary galactosylated and highly sialylated carbohydrates. Our data suggest that the type of expression host system was a dominating factor for formation of distinct glycopatterns of hFcγRIIIa, while the protein sequence and the site of glycosylation remained unchanged for both types of cells. Using surface plasmon resonance (SPR) interaction analysis, we show that the cell type and site specific glycosylation pattern of hFcγRIIIa influences its binding behavior to immunoglobulin molecules.  相似文献   

19.
Our growing comprehension of the biological roles of glycan moieties has created a clear need for expression systems that can produce mammalian-type glycoproteins. In turn, this has intensified interest in understanding the protein glycosylation pathways of the heterologous hosts that are commonly used for recombinant glycoprotein expression. Among these, insect cells are the most widely used and, particularly in their role as hosts for baculovirus expression vectors, provide a powerful tool for biotechnology. Various studies of the glycosylation patterns of endogenous and recombinant glycoproteins produced by insect cells have revealed a large variety of O- and N-linked glycan structures and have established that the major processed O- and N-glycan species found on these glycoproteins are (Gal beta1,3)GalNAc-O-Ser/Thr and Man3(Fuc)GlcNAc2-N-Asn, respectively. However, the ability or inability of insect cells to synthesize and compartmentalize sialic acids and to produce sialylated glycans remains controversial. This is an important issue because terminal sialic acid residues play diverse biological roles in many glycoconjugates. While most work indicates that insect cell-derived glycoproteins are not sialylated, some well-controlled studies suggest that sialylation can occur. In evaluating this work, it is important to recognize that oligosaccharide structural determination is tedious work, due to the infinite diversity of this class of compounds. Furthermore, there is no universal method of glycan analysis; rather, various strategies and techniques can be used, which provide glycobiologists with relatively more or less precise and reliable results. Therefore, it is important to consider the methodology used to assess glycan structures when evaluating these studies. The purpose of this review is to survey the studies that have contributed to our current view of glycoprotein sialylation in insect cell systems, according to the methods used. Possible reasons for the disagreement on this topic in the literature, which include the diverse origins of biological material and experimental artifacts, will be discussed. In the final analysis, it appears that if insect cells have the genetic potential to perform sialylation of glycoproteins, this is a highly specialized function that probably occurs rarely. Thus, the production of sialylated recombinant glycoproteins in the baculovirus-insect cell system will require metabolic engineering efforts to extend the native protein glycosylation pathways of insect cells.  相似文献   

20.
A limited number of glycoproteins including luteinizing hormone and carbonic anhydrase-VI (CA6) bear N-linked oligosaccharides that are modified with beta1,4-linked N-acetylgalactosamine (GalNAc). The selective addition of GalNAc to these glycoproteins requires that the beta1,4-N-acetylgalactosaminyltransferase (betaGT) recognize both the oligosaccharide acceptor and a peptide recognition determinant on the substrate glycoprotein. We report here that two recently cloned betaGTs, betaGT3 and betaGT4, that are able to transfer GalNAc to GlcNAc in beta1,4-linkage display the necessary glycoprotein specificity in vivo. Both betaGTs transfer GalNAc to N-linked oligosaccharides on the luteinizing hormone alpha subunit and CA6 but not to those on transferrin (Trf). A single peptide recognition determinant encoded in the carboxyl-terminal 19-amino acid sequence of bovine CA6 mediates transfer of GalNAc to each of its two N-linked oligosaccharides. The addition of this 19-amino acid sequence to the carboxyl terminus of Trf confers full acceptor activity onto Trf for both betaGT3 and betaGT4 in vivo. The complete 19-amino acid sequence is required for optimal GalNAc addition in vivo, indicating that the peptide sequence is both necessary and sufficient for recognition by betaGT3 and betaGT4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号