首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
D K Summers  D J Sherratt 《Cell》1984,36(4):1097-1103
Although the natural multicopy plasmid CoIE1 is maintained stably under most growth conditions, plasmid cloning vectors related to it are relatively unstable, being lost at frequencies of 10(-2)-10(-5) per cell per generation. Evidence suggests that CoIE1 and related plasmids are partitioned randomly at cell division and that plasmid stability is correlated inversely with plasmid multimerization; factors or conditions that reduce multimerization increase stability. Cells containing plasmid multimers segregate plasmid-free cells because the multimers are maintained at lower copy numbers than monomers, as predicted by origin-counting models for copy number control. CoIE1 is stable because it encodes a determinant, cer, that is necessary for recA-, recF-, and recE-independent recombination events that efficiently convert any multimers to monomers. We have localized monomerizing and stability determinants of CoIE1 to within a 0.38 kb region that, when cloned into plasmid vectors, greatly increases their stability.  相似文献   

4.
Paul S  Summers D 《Plasmid》2004,52(1):63-68
Dimers of low copy number plasmids must be resolved to monomers to prevent interference with active partition. For the P1 prophage this is achieved by the Cre site-specific recombinase acting at lox. Multimerisation of multicopy plasmids threatens stability via copy number depression, and multimers of ColE1 are resolved by XerCD-mediated recombination at cer. Xer-cer is constrained to multimer resolution by accessory proteins ArgR and PepA. Recently, it has been shown that ArgR and PepA influence Cre-mediated recombination at a cer-lox hybrid site in vitro, defining the structure of the synaptic complex. We show here that both ArgR and PepA are required for stable maintenance of the P1 prophage. It is extremely difficult to establish P1 in a strain lacking PepA and the prophage was lost rapidly once selection was removed. ArgR plays a less crucial role although its absence significantly increased prophage loss. The effect of the accessory proteins is seen only at physiological concentrations of Cre; when the recombinase is expressed from a multicopy plasmid, the prophage is unstable even in the presence of ArgR and PepA. We propose that ArgR and PepA are involved in Cre-lox recombination in vivo, probably by constraining the system to resolution of prophage dimers.  相似文献   

5.
A 3.2-kb fragment encoding five genes, parCBA/DE, in two divergently transcribed operons promotes stable maintenance of the replicon of the broad-host-range plasmid RK2 in a vector-independent manner in Escherichia coli. The parDE operon has been shown to contribute to stabilization through the postsegregational killing of plasmid-free daughter cells, while the parCBA operon encodes a resolvase, ParA, that mediates the resolution of plasmid multimers through site-specific recombination. To date, evidence indicates that multimer resolution alone does not play a significant role in RK2 stable maintenance by the parCBA operon in E. coli. It has been proposed, instead, that the parCBA region encodes an additional stability mechanism, a partition system, that ensures that each daughter cell receives a plasmid copy at cell division. However, studies carried out to date have not directly determined the plasmid stabilization activity of the parCBA operon alone. An assessment was made of the relative contributions of postsegregational killing (parDE) and the putative partitioning system (parCBA) to the stabilization of mini-RK2 replicons in E. coli. Mini-RK2 replicons carrying either the entire 3.2-kb (parCBA/DE) fragment or the 2.3-kb parCBA region alone were found to be stably maintained in two E. coli strains tested. The stabilization found is not due to resolution of multimers. The stabilizing effectiveness of parCBA was substantially reduced when the plasmid copy number was lowered, as in the case of E. coli cells carrying a temperature-sensitive mini-RK2 replicon grown at a nonpermissive temperature. The presence of the entire 3.2-kb region effectively stabilized the replicon, however, under both low- and high-copy-number-conditions. In those instances of decreased plasmid copy number, the postsegregational killing activity, encoded by parDE, either as part of the 3.2-kb fragment or alone played the major role in the stabilization of mini-RK2 replicons within the growing bacterial population. Our findings indicate that the parCBA operon functions to stabilize by a mechanism other than cell killing and resolution of plasmid multimers, while the parDE operon functions solely to stabilize plasmids by cell killing. The relative contribution of each system to stabilization depends on plasmid copy number and the particular E. coli host.  相似文献   

6.
dif (deletion induced filamentation) is a newly identified locus that lies within the terminus region of the Escherichia coli chromosome. The Dif phenotype was characterized by a subpopulation of filamentous cells with abnormal nucleoids and induction of the SOS repair system. Interactions between dif-carrying plasmids as well as between such plasmids and the bacterial chromosome demonstrated that dif is a cis-acting, recA-independent recombination site. Filamentation continued in dif mutants in which SOS-associated division inhibitors were inoperative, which showed that induction of these inhibitors was not the primary cause of filamentation. Filamentation was not observed in dif recA or dif recBC mutants, which were unable to carry out homologous recombination. The dif site shows homology with the cer site of plasmid ColE1, which resolves plasmid multimers to monomers. It is proposed that dif functions to resolve dimeric chromosomes produced by sister chromatid exchange, and that the Dif phenotype is due to the inability of these mutants to resolve multimers prior to cell division.  相似文献   

7.
XerC is a site-specific recombinase of the bacteriophage lambda integrase family that is encoded by xerC at 3700 kbp on the genetic map of Escherichia coli. The protein was originally identified through its role in converting multimers of plasmid ColE1 to monomers; only monomers are stably inherited. Here we demonstrate that XerC also has a role in the segregation of replicated chromosomes at cell division. xerC mutants form filaments with aberrant nucleotides that appear unable to partition correctly. A DNA segment (dif) from the replication terminus region of the E. coli chromosome binds XerC and acts as a substrate for XerC-mediated site-specific recombination when inserted into multicopy plasmids. This dif segment contains a region of 28 bp with sequence similarity to the crossover region of ColE1 cer. The cell division phenotype of xerC mutants is suppressed in strains deficient in homologous recombination, suggesting that the role of XerC/dif in chromosomal metabolism is to convert any chromosomal multimers (arising through homologous recombination) to monomers.  相似文献   

8.
Plasmid ColE1 specifies a recombination site (cer) which participates in the conversion of plasmid dimers to monomers. The uncontrolled accumulation of dimers (and higher oligomeric forms) would otherwise lead to plasmid instability. Exonuclease III-generated deletions have been used to define the left-hand boundary of the cer site. Deletions which have lost up to 60 bp adjacent to the boundary no longer mediate the conversion of plasmid dimers to monomers, but still recombine with a wild-type site. Although this boundary region is essential for dimer resolution, its DNA sequence is poorly conserved among multimer resolution sites in related plasmids. We present evidence that its function is to influence the three-dimensional organization of the site and suggest that it may be required for the formation of a condensed nucleoprotein complex.  相似文献   

9.
Inactivation of RecBCD nuclease (exonuclease V) and SbcB nuclease (exonuclease I) in Escherichia coli K-12 diverts most of plasmid replication activity from circular monomer production to the synthesis of linear multimers. Linear multimer synthesis has been demonstrated in plasmids of diverse origins and copy numbers, including E. coli minichromosomes. The effect of dnaA, dnaB, recF, and recJ mutations on the rate of linear multimer synthesis in sbcB cells after gam inactivation of RecBCD nuclease was investigated. Results are consistent with the hypothesis that homologous recombination, but not activities at the plasmid origin of replication, is involved in initiation of linear multimer synthesis.  相似文献   

10.
We have studied the recombination of plasmids bearing bom and cer sites. The bom ( basis of mobilization) site is required for conjugative transfer, while the cer ( Col E1 resolution) site is involved in the resolution of plasmid multimers, which increases plasmid stability. We constructed a pair of parent plasmids in such a way as to allow us select clones containing recombinant plasmids directly. Clone selection was based on the McrA sensitivity of recipient host DNA modified by M. Ecl18kI, which is encoded by one of the parent plasmids. The recombinant plasmid contains segments originating from both parental DNAs, which are bounded by bom and cer sites. Its structure is in accordance with our previously proposed model for recombination mediated by bom and cer sequences. The frequency of recombinant plasmid formation coincided with the frequency of recombination at the bom site. We also show that bom-mediated recombination in trans, unlike in cis, is independent of other genetic determinants on the conjugative plasmids.  相似文献   

11.
The dimer catastrophe hypothesis has been proposed previously to explain instability of multicopy plasmids whose partitioning is random, contrary to low copy number plasmids which are stably maintained and actively partitioned. Until now, this hypothesis has been investigated using multicopy ColE1 plasmids. However, for more detailed testing of the dimer/multimer catastrophe hypothesis, one should use a plasmid which can be maintained at either low or high copy number and still possesses the same mechanism of replication regulation. Here we used a modified lambda plasmid, pTC lambda 1. The advantage of this plasmid is that it can be maintained at different copy numbers depending on the concentration of an inducer which stimulates the initiation of plasmid replication. Results obtained with this plasmid in recombination proficient and deficient cells generally support the dimer/multimer catastrophe hypothesis, but also suggest some modification in the model.  相似文献   

12.
Field CM  Summers DK 《Plasmid》2012,67(2):88-94
In the absence of active partitioning, strict control of plasmid copy number is required to minimise the possibility of plasmid loss at bacterial cell division. An important cause of multicopy plasmid instability is the formation of plasmid dimers by recombination and their subsequent proliferation by over-replication in a process known as the dimer catastrophe. This leads to the formation of dimer-only cells in which plasmid copy number is substantially lower than in cells containing only monomers, and which have a greatly increased probability of plasmid loss at division. The accumulation of dimers triggers the synthesis of the regulatory small RNA, Rcd, which stimulates tryptophanase and increases the production of indole. This, in turn, inhibits Escherichia coli cell division. The Rcd checkpoint hypothesis proposes that delaying cell division allows time for the relatively slow conversion of plasmid dimers to monomers by Xer-cer site-specific recombination. In the present work we have re-evaluated this hypothesis and concluded that a cell division block is insufficient to prevent the dimer catastrophe. Plasmid replication must also be inhibited. In vivo experiments have shown that indole, when added exogenously to a broth culture of E. coli does indeed stop plasmid replication as well as cell division. We have also shown that indole inhibits the activity of DNA gyrase in vitro and propose that this is the mechanism by which plasmid replication is blocked. The simultaneous effects of upon growth, cell division and DNA replication in E. coli suggest that indole acts as a true cell cycle regulator.  相似文献   

13.
Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif sites occurs efficiently only when FtsK is present and under conditions that allow chromosomal dimer formation, whereas recombination at the plasmid sites cer and psi is independent of these factors. We propose that the chromosome dimer- and FtsK-dependent process that activates Xer recombination at plasmid dif also activates Xer recombination at chromosomal dif. The defects in chromosome segregation that result from mutation of the FtsK C-terminus are attributable to the failure of Xer recombination to resolve chromosome dimers to monomers. Conditions that lead to FtsK-independent Xer recombination support the hypothesis that FtsK acts on Holliday junction Xer recombination intermediates.  相似文献   

14.
Synthesis of linear plasmid multimers in Escherichia coli K-12.   总被引:40,自引:18,他引:22       下载免费PDF全文
Linear plasmid multimers were identified in extracts of recB21 recC22 strains containing derivatives of the ColE1-type plasmids pACYC184 and pBR322. A mutation in sbcB increases the proportion of plasmid DNA as linear multimers. A model to explain this is based on proposed roles of RecBC enzyme and SbcB enzyme (DNA exonuclease I) in preventing two types of rolling-circle DNA synthesis. Support for this hypothesis was obtained by derepressing synthesis of an inhibitor of RecBC enzyme and observing a difference in control of linear multimer synthesis and monomer circle replication. Reinitiation of rolling-circle DNA synthesis was proposed to occur by recA+-dependent and recA+-independent recombination events involving linear multimers. The presence of linear plasmid multimers in recB and recC mutants sheds new light on plasmid recombination frequencies in various mutant strains.  相似文献   

15.
Summary The hopE mutants of Escherichia coli, which cannot stably maintain a mini-F plasmid during cell division, have mutations in the recD gene coding for subunit D of the RecBCD enzyme (exonuclease V). A large amount of linear multimer DNA of mini-F and pBR322 plasmids accumulates in these hopE mutants. The linear multimers of plasmid DNA in the hopE (recD) mutants accumulate in sbc + genetic backgrounds and this depends on the recA + gene function. Linear plasmid multimers also accumulated in a recBC xthA triple mutant, but not an isogenic xthA mutant or an isogenic recBC mutant. The recBC xthA mutant is defective in the conjugative type of recombination. Linear plasmid multimers were not detected in the recBC strain. We propose models to account for linear multimer formation of plasmids in various mutants.  相似文献   

16.
A plasmid recombination assay, which utilized mutated Vibrio fischeri luciferase genes, cloned in Escherichia coli plasmids was developed. Expression of the recombination product, a functional luxA gene, was assayed by measuring light intensity. This system was used to investigate the effect of E. coli gene functions on lambda Red- and Gam-dependent plasmid recombination. The genetic and physiological requirements for Red- and Gam-dependent plasmid recombination are similar to the conditions which allow synthesis of plasmid linear multimers. Both recombination and linear multimer synthesis are mediated by Red activity in recBrecC and in sbcB mutants and by Gam activity in sbcB and sbcA mutants, but neither recombination nor linear multimer synthesis is mediated by Red or Gam functions in RecBCD+ExoI+ cells. When mediated by Red in sbcB mutants, both recombination and linear multimer synthesis are RecA-independent, and when mediated by Gam, in the same genetic background, both are RecA-dependent. A role for replication in Red- and Gam-mediated plasmid recombination is suggested by the dependence of the recombination activity on DnaB. A model which hypothesizes mutual dependence of linear plasmid multimer synthesis and plasmid recombination by the RecE, RecF and Red pathways is presented. We propose that ends that are produced during this type of replication are recombinogenic in all three pathways and that new rounds of replication are primed by a recombination-dependent invasion of duplex DNA by 3' single strand ends.  相似文献   

17.
In the 679 b.p. SalI-KpnI-fragment of the small colicinogenic plasmid Co1N, the par-region has been localized, functioning at the expense of resolution of plasmid DNA multimer forms. It has been shown that the replication process of the monomeric form of the recombinant plasmid containing the Co1N par-region do not result in formation of a considerable number of multimers. Gene xer A product is necessary for the functioning of the multimer resolution mechanism of Co1N as well as Co1E1. Nucleotide sequence analysis of the Co1N par-region revealed the presence of essential homology with the par-locus of plasmid Co1E1. Results obtained in this work and data from literature indicate that par-regions of the Co1E1-type plasmids possess considerable homology, function according to a similar mechanism and represent the universal stability module of multicopy colicinogenic plasmids.  相似文献   

18.
19.
20.
The heritable stability in Escherichia coli of the multicopy plasmid ColE1 and its natural relatives requires that the plasmids be maintained in the monomeric state. Plasmid multimers, that arise through recA-dependent homologous recombination, are normally converted to monomers by a site-specific recombination system that acts at a specific plasmid site (cer in ColE1). No plasmid functions that act at this site have been identified. In contrast, two unlinked E.coli genes that encode functions required for cer-mediated site-specific recombination have been identified. Here we describe the isolation and characterization of one such gene (xerA) and show it to be identical to the gene encoding the repressor of the arginine biosynthetic genes (argR). The argR protein binds to cer DNA both in vivo and in vitro in the presence of arginine. We believe this binding is required to generate a higher order protein-DNA complex within the recombinational synapse. The argR gene of Bacillus subtilis complements an E.coli argR deficiency for cer-mediated recombination despite the two proteins having only 27% amino acid identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号