首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The maturation of the 5'- and 5-monodeiodinase system in liver, kidney and brown adipose tissue of rabbits, during the foetal period (from 21 days of gestation to birth) and the neonatal period (from birth to 3 weeks of life) was studied. A sudden increase of 5'- and 5-monodeiodinase activity in liver and kidney 3 days before birth was observed, falling to a nadir at day 3 after birth. Foetal and neonatal serum T4, T3 and rT3 concentration were very low and rose progressively with age, reaching adult values at about day 21. In the foetal brown adipose tissue high 5'-monodeiodinase and low 5-monodeiodinase activity was found. The 5'-monodeiodinase decreased during the first days of life whereas the 5-monodeiodinase activity remained at a low stable level until day 3 when the activities of both enzymes increased. The increase of conversion rate of T4 to T3 and rT3 in liver and kidney well correlate with the triiodothyronines concentration in serum from day 3 after birth.  相似文献   

2.
The thyroid hormones metabolism is considerably altered in many pathological processes including fever. Experiments performed on rabbits (n=62) showed that increase in the rectal temperature by 1 degrees C (after turpentine oil sc injections) decreased 5'-monodeiodinase activity, the enzyme responsible for deiodination of thyroxine to the most active thyroid hormone 3,3',5-triiodothyronine (T3), in the liver by 25% and in the kidney by 20%. Triiodothyronines concentration in serum decreased during fever from 1.57+/-0.12 to 0.52+/-0.02 nmolT3/l and from 0.17+/-0.01 to 0.07+/-0.02 nmol rT3/l. The increase in the body temperature intensified lipid peroxidation processes (malondialdehyde level increased from 1.2 times in kidney, and 1.4 times in the liver homogenates to 1.6 times in serum). The antioxidants (vitamin E and selenium) supplementation decreased lipid peroxidation processes during fever and partly restored the 5'-monodeiodinase activity. The present study confirmed our previous observations in vitro that lipid peroxidation (free radical formation) influences the 5'-monodeiodinase activity in tissues and alters the thyroid hormones metabolism.  相似文献   

3.
Two forms of iodothyronine 5'-monodeiodinase (5'-D) were studied in liver homogenates from adult and developing quail. The influence of fasting in adults and corticosterone treatment in embryonic quail on 5'-D also were examined. Liver homogenates were assayed for 5'-D activity in the presence of abundant substrate (T4) and cofactor (dithiothreitol; DTT). Generation of T3 during a 15 min incubation at 37 degrees C was assessed by an ethanol-based RIA. In adults, both Type I [the fraction of activity inhibited by propylthiouracil (PTU)] and a putative Type II (the PTU-insensitive fraction) were present in liver homogenates. Type II activity typically comprised about 30% of Total activity. Type I activity first appeared on day 15 of the 16.5 day incubation period, increased 20-fold to peak at hatching, then gradually declined to reach adult levels by 21 days of age. Type II activity was present at all developmental stages and was highest during the perinatal period. Corticosterone treatment in vivo on day 13 of development induced increases in both Type I and Type II activities in liver homogenates 24- and 48-h after treatment. This study demonstrates that in avian liver a putative Type II 5'-D activity (generally considered to be lacking in mammalian liver) is present and may be important in the maintenance of minimal concentrations of tissue T3 during fasting. Both types of 5'-D contribute to the developmental pattern of serum T3 concentrations. Type II comprises a large proportion of total activity during late embryonic life; Type I becomes predominant at the beginning of the perinatal period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Alcohol and acetaldehyde in rat's milk following ethanol administration   总被引:1,自引:0,他引:1  
C Guerri  R Sanchis 《Life sciences》1986,38(17):1543-1556
Alcohol and acetaldehyde were measured in milk and peripheral blood in chronic alcoholic rats, at 5 and 15 days of lactation. Ethanol in blood increased throughout lactation and the levels of acetaldehyde were much higher than in nonlactating alcoholic rats. The concentration of acetaldehyde in milk was always ca. 50% of that in blood, whereas that of ethanol varied within the range of 44-80% of the blood levels. Blood alcohol levels in the corresponding sucking pups were much lower than in maternal blood and increased throughout lactation. The time course of ethanol and acetaldehyde concentration in blood and milk were determined in normal lactating rats after cyanamide (40 mg/kg) and ethanol administration (2 or 4 g/kg). Milk alcohol reached higher concentrations than in blood within the first hour of ethanol administration, decreasing and remaining constant thereafter at ca. 65% of those in blood. Acetaldehyde levels in milk were always 35-45% lower than in blood. No alcohol dehydrogenase activity was found in homogenates of mammary tissue; however there was some aldehyde dehydrogenase activity. A significant decrease in mammary tissue aldehyde dehydrogenase was found in chronic alcoholic rats. The role of this enzyme is discussed.  相似文献   

5.
Taurine levels in various tissues and fluids of female rats were measured throughout pregnancy and lactation. The taurine concentration of liver markedly increased at days 19 and 21 of pregnancy to 188% of levels for nonpregnant, nonlactating control rats and then fell rapidly after delivery to reach only 30% of the control level by 3 days postpartum. Muscle and heart taurine concentrations were significantly negatively correlated with liver taurine levels. Brain taurine levels were low at days 14, 19 and 21 of pregnancy and day 14 of lactation. Urinary excretion of taurine decreased to 32% of control levels at day 21 of pregnancy and was negatively correlated with the hepatic taurine concentration over the course of pregnancy and lactation. The ratio of glycine- to taurine-conjugated bile acids was strongly negatively correlated with the hepatic taurine concentration. The milk taurine level was positively correlated with hepatic taurine concentration during lactation. The hepatic taurine pool appears to increase just before parturition and to rapidly decrease during the first few days of lactation when high levels of taurine are secreted in the milk. Our data suggests that the accumulation of taurine in the liver may be related to both a decreased renal clearance of taurine and a shifting of tauring from other tissues to the liver and that this enlarged pool of hepatic taurine may serve as a source of taurine for secretion in the early milk.  相似文献   

6.
The effect of triiodothyronine (T3) on hepatic thyroxine (T4) 5'-monodeiodinase and the subcellular localization of the enzyme were examined in regenerating rat liver, because it seemed likely that the effect of T3 might be accentuated during liver regeneration. Five days after T3 treatment, the specific activity of the monodeiodinase in the microsomal fraction (105,000 X g pellet) of regenerating liver was increased to 207% of the control value. Lineweaver-Burk plots showed that the Vmax for T4 5'-monodeiodination was about 3 times greater in T3-treated rats than in controls, but that there was no difference between the two groups in the apparent Km value for T4. About 55% of the total enzyme activity was found in the endoplasmic reticulum (ER) of the liver of both controls and T3-treated rats. The subcellular distribution of the enzyme was similar to that of NADPH-cytochrome c reductase (NADPH-cyt c reductase), a marker of the ER, but different from that of Na+,K+-ATPase, a marker of plasma membranes (PM).  相似文献   

7.
Thyroxine 5'-monodeiodinase is located in the proximal tubules of the rabbit kidney. To estimate the subcellular distribution of 5'-monodeiodinase activity, we prepared subcellular fractions, a basolateral membrane fraction and a brush border membrane fraction, from kidneys of Japanese white rabbits. Each fraction (0.5 mg protein) was incubated at 37 degrees C for 60 min with 0.5 micrograms T4 in the presence of 5 mM DTT. The T3 generated in the reaction mixture was extracted with cold ethanol and measured by RIA. For analysis of propylthiouracil-insensitive thyroxine 5'-monodeiodinase, we examined its kinetic behavior at nanomolar concentrations of the substrate, T4, in the presence of 100 microM propylthiouracil. In order of decreasing activity, basolateral membrane, microsomal fraction, mitochondrial fraction, cytosolic fraction, brush border membrane and nuclear fraction were capable of converting T4 to T3. Upon addition of 10(-5) M propylthiouracil to the reaction mixture, 5'-monodeiodinase activities of basolateral membrane and brush border membrane were inhibited by more than 90%, but that of microsomes was inhibited by only about 50%. In addition, kinetic analysis of microsomal 5'-monodeiodinase activity at nanomolar T4 concentrations in the presence of 10(-4) M propylthiouracil suggested on apparent Km of 3.8 nmol. These results indicate that there is high-Km 5'-monodeiodinase activity (PTU-sensitive) in the basolateral and brush border membranes and also high-Km and low-Km 5'-monodeiodinase (PTU-insensitive) in the microsomes of rabbit kidney.  相似文献   

8.
Perinatal thyroid dysfunction in the rat leads to permanent alterations in pituitary TSH secretion in the adult animal. Thus, neonatal hyperthyroidism (NH) and perinatal hypothyroidism (PH) both result in apparent increased pituitary sensitivity to the feedback effects of thyroid hormones in the adult rat. To determine if increased intrapituitary generation of triiodothyronine (T3) might account for these observations, we measured thyroxine (T4) 5'-deiodinase activity in pituitary homogenates of adult NH and PH rats. NH was induced by injecting neonatal rats with 12 daily sc injections of T4 (0.4 microgram/g body weight (BW]. Control rats received vehicle alone. PH was induced by administering 0.05% 6-n-propylthiouracil in the drinking water to pregnant dams from the 16th day of gestation through the 12th day postpartum. Thereafter, a normal water supply was substituted. NH and PH rats were allowed to mature and were sacrificed at 105 days of age. Serum T4, T3, and TSH concentrations were measured by radioimmunoassay. Pituitary T4 5'-deiodinase activity was assessed by the measurement of T3 formation by pituitary homogenates incubated in the presence of 0.65 microM T4 and 100 mM dithiothreitol at 37 degrees C for 90 min. Body weights of adult NH and PH rats were slightly but not significantly decreased compared with control rats. Relative pituitary gland weight (milligrams per 100 g BW) was significantly decreased in adult PH rats (P less than 0.005) but not in adult NH rats. In adult NH rats, serum T4 and T3 concentrations were significantly decreased (P less than 0.01) compared with control rats. Serum TSH concentrations were similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Serum T4 and rT3 were high at about 4-12 h after birth, then they decreased to a nadir on day 3 (rT3) and day 7 (T4). Serum T3 concentration fell immediately after birth but then increased to a relatively stable level during the next 2-6 weeks, then fell after weaning. Reciprocal concentration profiles of T4, T3 and rT3 in the thyroid were found. The thyroidal iodothyronine content increased significantly after weaning. In the liver, 5'-monodeiodinating activity, low after birth, rose until day 3 and then decreased concomitantly with T3 in serum. The 5-monodeiodinating activity, high at birth, fell to a nadir at about 3 weeks. No changes in 5- and 5'-deiodinase activity after 3 weeks were observed. Opposite to the variations in absolute content, the iodothyronine relative proportion in thyroid tissue was practically unchanged until weaning time (6 weeks), when they rose. Serum T3/T4 and rT3/T4 ratios increased with age until weaning. The post-weaned pigs had T3/T4 and rT3/T4 ratios about two times smaller than 6-weeks-old pigs. Serum rT3/T3, high after birth, decreased with age. Summarizing, the results indicate that neither changes in the thyroid iodothyronine content nor in the liver T4-monodeiodinating activity can solely account for variations in serum TH during the early neonatal period in the pig. It is suggested that the rapid variations in serum TH levels can reflect changes in the thyroidal secretory activity in preferential T3 secretion and/or blood disappearance rates.  相似文献   

10.
To find out whether an inhibitor of extrathyroidal conversion of iodothyronines is present in sera of starved animals, pig liver and kidney homogenates were incubated with T4, T3 or rT3 and dithiotreitol in the presence of evaporated diethyl ether extracts of sera obtained from fed and starved (1-12 days) rabbits. Sera extracts of short-term (1-4 days) starved rabbits caused a significant inhibition of T4 to T3 conversion (54% on day 3) and T4 to rT3 deiodination (52% on day 2) in liver homogenates. Extracts of sera from long-term (8 and 12 days) starved animals diminished only liver T4 to T3 conversion on day 8 and had no influence on liver T4 to rT3 conversion. 5'-deiodination of rT3 (to 3,3'-T2) in liver was gradually decreased by extracts of sera from animals starved during 2-12 days. Liver rT3-5-deiodination (to 3',5'-T2) was significantly impaired on day 4 and totally depressed by long-term starvation. In vitro T3 to 3,3'-T2 conversion in liver was markedly (59-103%) increased by ether extracts of sera from short-term fasted rabbits and considerably inhibited (62-72%) by long-term fasting. T4 to T3 conversion in kidney was significantly influenced by sera extracts obtained neither from short-term fasted rabbits and considerably inhibited (62-72%) by long-term fasting. T4 to T3 conversion in kidney was significantly influenced by sera extracts obtained neither from short-term nor from long-term fasted rabbits but T4-5-deiodination (to rT3) was reduced by sera extracts of short-term fasted animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 μmol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

12.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 mumol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

13.
This study investigated if lactating and nonlactating rats presented differences in relation to hepatic sensitivity to HgCl2 and the potential preventive role of ZnCl2. Lactating (days 3–12 of lactation) and nonlactating rats received 27 mg/kg ZnCl2 for five consecutive days and 5 mg/kg HgCl2 for five subsequent days. Lactating and nonlactating rats exposed to HgCl2 presented a decrease in food intake, a decrease in plasma alanine aminotransferase (ALT), and an increase in hepatic Hg levels when compared to the control group. Only lactating rats exposed to HgCl2 presented an increase in hepatic δ-aminolevulinic acid dehydratase activity. On the other hand, only nonlactating rats exposed to HgCl2 presented an increase in plasma aspartate aminotransferase (AST). ZnCl2 pre-exposure partially protected the increase in plasma AST activity presented by nonlactating rats and potentiated the liver Hg accumulation in lactating rats. Pups from the Sal–Hg and Zn–Hg groups showed a decrease in absolute liver weight and an increase in liver Hg levels. Summarizing, this study demonstrated that lactating rats presented distinct biochemical responses compared to nonlactating rats exposed to HgCl2 when hepatic parameters were evaluated.  相似文献   

14.
The amino-acid enzymes (aspartate-, alanine- and tyrosine transaminases, serine dehydratase, glutamate dehydrogenase, glutamine synthetase, adenylate deaminase and arginase) activities in the liver and kidney of developing rats (days 19 and 21 after conception and 1, 5, 10, 20 and 30 after birth) compared with adults were determined in crude homogenates. Most enzymes attained the adult levels early after birth or at weaning, showing a marked trend towards amino-acid nitrogen conservation during late foetal and specially during the neonatal period, increasing their activity during lactation. It is postulated that these changes are closely related to availability of low grade protein in diet as well as to maturation of amino-acid homeostasis maintenance for growth.  相似文献   

15.
Rats were fed selenium-deficient (less than 0.005 mg selenium/kg) or selenium-supplemented diets (0.1 mg selenium/kg, as Na2SeO2) for up to five wks from weaning to assess the effects of developing selenium deficiency on the metabolism of thyroid hormones. Within two wks 3:5,3'-triiodothyronine (T3) production from thyroxine (T4) in liver homogenates from selenium-deficient rats was significantly lower compared with the activity in liver homogenates from selenium-supplemented rats. This decreased activity was probably responsible, in part, for the higher T4 and lower T3 concentrations in plasma from the selenium-deficient rats after 3, 4, and 5 weeks of experiment. Repletion of selenium-deficient rats with single intra-peritoneal injections of 200 micrograms selenium/kg body wt. (as Na2SeO3) 5 days before sampling reversed the effects of the deficiency on thyroid hormone metabolism and significantly increased liver and plasma glutathione peroxidase activities. However a dose of 10 micrograms selenium/kg body wt given to rats of similar low selenium status had no effect on thyroid hormone metabolism or glutathione peroxidase activity but did reverse the increase in hepatic glutathione S-transferase activity characteristic of severe selenium deficiency. Imbalances in thyroid hormone metabolism are an early consequence of selenium deficiency and are probably not related to changes in hepatic xenobiotic metabolizing enzymes associated with severe deficiency.  相似文献   

16.
The effect of thyroxine (T4) on T4 conversion to triiodothyronine (T3) and reverse T3 (rT3) was studied in BB/W rats. A colony of 38 BB/W rats was obtained and half were treated with thyroxine (T4), 1 mg per liter of drinking water. At 106 days of age the following groups were identified: nondiabetic, no T4 treatment, 8 rats; nondiabetic, T4 treated, 8 rats; diabetic, no T4 treatment, 10 rats; diabetic, T4 treated, 7 rats. All animals with diabetes were treated with insulin. T4 conversion to T3 and rT3 was assessed in liver homogenates in 0.1 M Tris-HCl buffer, pH 7.4, with or without 5 mM dithiothreitol (DDT). Serum T4 and rT3 were significantly elevated in both T4-treated groups (P less than 0.001), while serum T3 was not affected in either. Basal T4 deiodination to T3 by the liver homogenate did not change on treatment with T4; the addition of DTT increased T3 production in the homogenate from T4 treated nondiabetic animals (P less than 0.05). In both nondiabetic and insulin-treated diabetic rats there was no effect of T4 on the rate of rT3 production. Since, in the rat, 30-40% of circulating T3 is a direct contribution of thyroid gland secretion, and that would be absent in our T4-suppressed animals, the normal serum T3 may reflect increased absolute peripheral T3 production from the greater concentration of circulating T4.  相似文献   

17.
Diallyl sulfide (DAS) is a flavor compound derived from garlic and is active in the inhibition of chemically induced cytotoxicity and carcinogenicity in animal models. This study was conducted to examine the effects of the treatment of DAS and garlic homogenates on the activities of catalase, glutathione peroxidase, and superoxide dismutase. Male Sprague-Dawley rats were treated with DAS i.g. at daily doses of 50 or 200 mg/kg for 8 days, causing the hepatic catalase activity to decrease by 55 and 95%, respectively. Such a decrease in hepatic catalase activity was also observed when the DAS treatment was extended to 29 days. Western blot analysis showed that the DAS treatments resulted in corresponding decreases in the liver catalase protein level. No significant change in the catalase activity in the kidney, lung, and brain was observed with the treatments, but a slight decrease in heart catalase activity was observed. These treatments did not cause significant changes in superoxide dismutase and glutathione peroxidase activities in these tissues. Treatment with DAS at a daily dose of 200 mg/kg for 1-7 days resulted in a gradual decrease in the liver catalase activity to 5% of the control level, but it did not decrease the erythrocyte catalase activity. Treatment of rats with fresh garlic homogenates (2 or 4 g/kg, i.g., daily for 7 days) caused a 35% decrease in liver catalase activity. A/J mice treated with DAS and garlic homogenates also showed a decrease in the liver catalase activity. Diallyl sulfone (DASO2), a DAS metabolite, however, did not effectively decrease catalase activity in mice. The catalase activity was not inhibited by either DAS or DASO2 in vitro. The present results demonstrate that treatment with DAS and garlic homogenates decrease the hepatic catalase level in rats and mice.  相似文献   

18.
To determine the localization of T4 5'-monodeiodinase activity in rabbit and rat nephron segments, the formation of tri-iodothyronine (T3) from thyroxine (T4) was measured in kidney homogenate and in isolated nephron segments obtained by the microdissection method. In order of decreasing activity, homogenates of rabbit renal cortex, outer medulla and inner medulla were capable of converting T4 to T3. In the isolated nephron segments of the rabbit cortex, the activities were noted in both proximal convoluted and proximal straight tubules. On the other hand, the activities were not detected in segments including the cortical thick ascending limb of Henle's loop, the distal convoluted tubule, the connecting tubule, and the cortical collecting tubule. It is concluded that both the convoluted and the straight tubules are the sites of T3 production in the kidney.  相似文献   

19.
Pups whose mothers were leptin-treated during the last 3 days of lactation have thyroid dysfunction at adulthood. However, there was no report about leptin treatment in the first days of life or about its action on thyroid function during development. Here, we evaluated the effects of maternal leptin treatment on the first 10 days of lactation upon thyroid function of the offspring at 21, 30, and 180 days old. At birth, lactating Wistar rats were divided into: Leptin (Lep) - leptin-treated (8 μg/100 g of body weight, s.c.) for the first 10 days of lactation and Control (C, saline-treated). Mothers were killed at the end of lactation and their offspring at 21, 30, and 180 days old. Triiodothyronine (T3), thyroxine (T4), thyrotropin (TSH), and leptin levels in serum and milk were measured. Liver mitochondrial glycerolphosphate dehydrogenase (mGPD) activity was determined. Significant differences had p<0.05. At the end of lactation, Lep mothers had higher milk T3 (+ 30%), while their offspring had higher serum T3 (+ 20%) and TSH (+ 84%). At 30 days-old, Lep offspring showed lower TSH ( - 48%), T3 ( - 20%), and mGPDm ( - 42%). At 180 days-old, Lep group presented hyperleptinemia (1.4-fold increase), higher serum T3 (+ 22%), and lower mGPD activity ( - 57%). Maternal hyperleptinemia on lactation causes hypothyroidism in the pups at 30 days, which may program for higher serum T3 at adulthood. In conclusion, maternal hyperleptinemia during lactation, that is common in obese mothers, may have an impact in future disease development, such as thyroid dysfunction.  相似文献   

20.
Induction of inflammation by turpentine injection caused 1.5-2-fold increase of both sialyl- and galactosyltransferase activity in liver homogenates. The effect was apparent after 12 h of turpentine treatment. Serum sialyltransferase activity started to increase in the inflamed rats after 18 h, reaching a maximum of 4-fold at 48 h. In contrast, galactosyltransferase activity in serum showed no significant increase. The coordinated and temporal increase of sialyltransferase activity in liver and serum suggest involvement of a specific mechanism for the preferential release of this enzyme into serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号