首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The bacterial replicative helicases known as DnaB are considered to be members of the RecA superfamily. All members of this superfamily, including DnaB, have a conserved C- terminal domain, known as the RecA core. We unearthed a series of mycobacteriophage encoded proteins in which the RecA core domain alone was present. These proteins were phylogenetically related to each other and formed a distinct clade within the RecA superfamily. A mycobacteriophage encoded protein, Wildcat Gp80 that roots deep in the DnaB family, was found to possess a core domain having significant sequence homology (Expect value < 10-5) with members of this novel cluster. This indicated that Wildcat Gp80, and by extrapolation, other members of the DnaB helicase family, may have evolved from a single domain RecA core polypeptide belonging to this novel group. Biochemical investigations confirmed that Wildcat Gp80 was a helicase. Surprisingly, our investigations also revealed that a thioredoxin tagged truncated version of the protein in which the N-terminal sequences were removed was fully capable of supporting helicase activity, although its ATP dependence properties were different. DnaB helicase activity is thus, primarily a function of the RecA core although additional N-terminal sequences may be necessary for fine tuning its activity and stability. Based on sequence comparison and biochemical studies we propose that DnaB helicases may have evolved from single domain RecA core proteins having helicase activities of their own, through the incorporation of additional N-terminal sequences.  相似文献   

3.
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.  相似文献   

4.
"Extra" domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIA(Fru) and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane alpha-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.  相似文献   

5.
Ypt/Rab proteins of the Ras superfamily are regulators of protein transport in exo- and endocytosis. Like Ras and Rho proteins, they have a slow intrinsic GTPase activity that can be accelerated by several orders of magnitude by GTPase-activating proteins (GAP). Here we describe a new member of a family of Ypt/Rab-specific GAPs, Msb4p/Gyp4p, that shares with other Gyp family members significant homology in the catalytic domain, recently identified in Gyp1p and Gyp7p. Purified Msb4p/Gyp4p acts primarily on Sec4p, Ypt6p and Ypt7p and might have a role in polarized secretion.  相似文献   

6.
Butyrophilins (BTN) belong to the immunoglobulin (Ig) superfamily of transmembrane proteins. These molecules are of increasing interest to immunologists, as they share a structural homology with B7 family members at the extracellular domain level. Moreover, a role of these molecules has been suggested in the negative regulation of lymphocyte activation for almost all the BTN that have been studied. In addition, the expression of some BTN family members has been reported to be associated with autoimmune diseases. Over the last few years, the number of BTN and BTN-like members has greatly increased. In this study, the butyrophilin family in mammals has been revisited, using phylogenetic analysis to identify all the family members and the phylogenetic relations among them, and to establish a standard nomenclature. Fourteen BTN groups were identified that are not all conserved between mammalian species. In addition, an overview of expression profiles and functional BTN data demonstrates that these molecules represent a new area of investigation for the design of future strategies in the modulation of the immune system.  相似文献   

7.
The Xenopus cerberus gene is able to induce ectopic heads in Xenopus embryos. At the time of its identification, cerberus shared significant homology with only one other protein, the putative rat tumor suppressor protein Dan. Sequence analysis has revealed that cerberus and Dan are members of a family of predicted secreted proteins, here called the can family. The identification of a can-family member in the nematode Caenorhabditis elegans, CeCan1, suggests that this family is of ancient origin. In the mouse, there are at least five family members: Cer1, Drm, PRDC, Dan, and Dte. These genes are expressed in patterns that suggest that they may play important roles in patterning the developing embryo. Cer1 marks the anterior visceral endoderm at E6.5. Dte is expressed asymmetrically in the developing node. Dan is first seen in the head mesoderm of early head fold stage embryos and Drm is expressed in the lateral paraxial mesoderm at E8.5. The region of homology shared by these genes, here called the can domain, closely resembles the cysteine knot motif found in a number of signaling molecules, such as members of the TGFbeta superfamily. Epitope-tagged versions of Cer1 show that, unlike in TGFbeta superfamily members, the cysteine knot motif is not processed away from a proprotein. Recent experiments in Xenopus have suggested that cerberus may act as an inhibitor of BMP signaling. To examine this further, the ability of Dan, Cer1, and human DRM to attenuate Bmp4 signaling has been assessed in P19 cells using pTlx-Lux, a BMP-responsive reporter. All three genes are able to inhibit Bmp4 signaling. These data suggest that the different family members may act to modulate the action of TGFbeta family members during development.  相似文献   

8.
Specificity, diversity, and regulation in TGF-beta superfamily signaling.   总被引:44,自引:0,他引:44  
E Piek  C H Heldin  P Ten Dijke 《FASEB journal》1999,13(15):2105-2124
  相似文献   

9.
Alpha-fetoprotein (AFP)
  • 1 AFP, alpha-fetoprotein; T3R, thyroid hormone (triiodothyronine) receptor; RAR, retionic acid receptor; erbA, putative thyroid hormone receptor proto-oncogene products; VDR, vitamin D receptor; MR, mineralocorticoid receptor; GR, glucocorticoid receptor; PR, progesterone receptor; AR, androgen receptor; HRE, hormone response element on DNA; RXR, retionic-X-receptor; RAP, receptor auxiliary (accessory) proteins; E, estrogen.
  • is a tumor-associated fetal marker, associated both with tumor growth and with birth defects. AFP, whose precise function is unknown, has been classified as belonging to a protein superfamily together with albumin and vitamin D-binding (Gc) protein. AFP has been shown to bind various ligands in vitro including fatty acids, estrogens, thyroid hormones and retinoic acids. The steroid/thyroid nuclear receptor superfamily of proteins has recently become a major focus of biomedical investigation regarding regulation of gene expression. These receptors are thought to bind to DNA-hormone response elements (HRE) that affect growth, development, differentiation, reproduction and homeostasis. The HREs are known to share DNA sequences with the various members of the nuclear receptor superfamily. In the present report, the possibility of a leucine-zipper dimerization (heptad) motif in the carboxy-terminal third domain of both rodent and human AFP is postulated. The presence of nine such hydrophobic repeats in the third domain of the AFP molecule mimics the heptad dimerization repeats found in the retinoic acid, thyroid, e-erbA and other members of the nuclear receptor superfamily. Computer analysis revealed that the most conservative matching occurred between AFP and the retinoic acid class of receptors. However, other superfamily members displayed 40–60% homology with 5 of 9 AFP heptads. These findings could provide a possible mechanism for explaining the growth-regulatory properties (both inhibition and enhancement) that have been ascribed to AFP in the last decade.  相似文献   

    10.
    Signaling through the tumor necrosis factor receptor (TNFR) superfamily can lead to apoptosis or promote cell survival, proliferation, and differentiation. A subset of this family, including TNFR1 and Fas, signals cell death via an intracellular death domain and therefore is termed the death receptor (DR) family. In this study, we identified new members of the DR family, designated xDR-M1 and xDR-M2, in Xenopus laevis. The two proteins, which show high homology (71.7% identity), have characteristics of the DR family, that is, three cysteine-rich domains, a transmembrane domain, and a death domain. To elucidate how members of xDR-M subfamily regulate cell death and survival, we examined the intracellular signaling mediated by these receptors in 293T and A6 cells. Overexpression of xDR-M2 induced apoptosis and activated caspase-8, c-Jun N-terminal kinase, and nuclear factor-kappaB, although its death domain to a greater extent than did that of xDR-M1 in 293T cells. A caspase-8 inhibitor potently blocked this apoptosis induced by xDR-M2. In contrast, xDR-M1 showed a greater ability to induce apoptosis through its death domain than did xDR-M2 in A6 cells. Interestingly, a general serine protease inhibitor, but not the caspase-8 inhibitor, blocked the xDR-M1-induced apoptosis. These results imply that activation of caspase-8 or serine protease(s) may be required for the xDR-M2- or xDR-M1-induced apoptosis, respectively. Although xDR-M1 and xDR-M2 are very similar to each other, the difference in their death domains may result in diverse signaling, suggesting distinct roles of xDR-M1 and xDR-M2 in cell death or survival.  相似文献   

    11.
    Molecular recognition of BMP-2 and BMP receptor IA   总被引:2,自引:0,他引:2  
    Bone morphogenetic protein-2 (BMP-2) and other members of the TGF-beta superfamily regulate the development, maintenance and regeneration of tissues and organs. Binding epitopes for these extracellular signaling proteins have been defined, but hot spots specifying binding affinity and specificity have so far not been identified. In this study, mutational and structural analyses show that epitopes of BMP-2 and the BRIA receptor form a new type of protein-protein interface. The main chain atoms of Leu 51 and Asp53 of BMP-2 represent a hot spot of binding to BRIA. The BMP-2 variant L51P was deficient in type I receptor binding only, whereas its overall structure and its binding to type II receptors and modulator proteins, such as noggin, were unchanged. Thus, the L51P substitution converts BMP-2 into a receptor-inactive inhibitor of noggin. These results are relevant for other proteins of the TGF-beta superfamily and provide useful clues for structure-based drug design.  相似文献   

    12.
    Ras proteins function as molecular switches that are activated in response to signalling pathways initiated by various extracellular stimuli and subsequently bind to numerous effector proteins leading to the activation of several signalling cascades within the cell. Ras and Ras-related proteins belong to a large superfamily of small GTPases characterized by significant sequence and function similarities. Several evidence indicate the existence of complex signalling networks that link Ras with its relatives in the family. A key role in this cross-talk is played by guanine nucleotide exchange factors (GEFs) that serve both as regulators and as effectors of Ras family proteins. The members of the RalGDS family, RalGDS, RGL, RGL2/Rlf and RGL3, can interact with activated Ras through their Ras Binding Domain (RBD), but may function as effectors for other Ras family members. They possess a REM-CDC25 homology region like RasGEFs, but specifically activate only RalA and RalB and not Ras or other Ras-related small GTPases. In this review we provide an update on this recently discovered family of GEFs, highlighting their crucial role in coupling activated Ras to activation of Ral, thus regulating several fundamental cell processes, and also discussing some evidence supporting Ras-independent additional functions of RalGDS proteins.  相似文献   

    13.
    Tordai H  Bányai L  Patthy L 《FEBS letters》1999,461(1-2):63-67
    Based on homology search and structure prediction methods we show that (1) the N-terminal N domains of members of the plasminogen/hepatocyte growth factor family, (2) the apple domains of the plasma prekallikrein/coagulation factor XI family, and (3) domains of various nematode proteins belong to the same module superfamily, hereafter referred to as the PAN module. The patterns of conserved residues correspond to secondary structural elements of the known three-dimensional structure of hepatocyte growth factor N domain, therefore we predict a similar fold for all members of this superfamily. Based on available functional informations on apple domains and N domains, it is clear that PAN modules have significant functional versatility, they fulfill diverse biological functions by mediating protein-protein or protein-carbohydrate interactions.  相似文献   

    14.
    We have identified seven ERK-related proteins ("ERPs"), including ERK2, that are stably associated in vivo with AP-1 dimers composed of diverse Jun and Fos family proteins. These complexes have kinase activity. We designate them as "class I ERPs." We originally hypothesized that these ERPs associate with DNA along with AP-1 proteins. We devised a DNA affinity chromatography-based analytical assay for DNA binding, the "nucleotide affinity preincubation specificity test recognition" (NAPSTER) assay. In this assay, class I ERPs do not associate with AP-1 DNA. However, several new "class II" ERPs do associate with DNA. p41 and p44 are ERK1/2-related ERPs that lack kinase activity and associate along with AP-1 proteins with AP-1 DNA. Class I ERPs and their associated kinase activity thus appear to bind AP-1 dimers when they are not bound to DNA and then disengage and are replaced by class II ERPs to form higher order complexes when AP-1 dimers bind DNA. p97 is a class III ERP, related to ERK3, that associates with AP-1 DNA without AP-1 proteins. With the exception of ERK2, none of the 10 ERPs appear to be known mitogen-activated protein kinase superfamily members.  相似文献   

    15.
    Transforming growth factor-β (TGFβ) superfamily members exert their diverse biological effects through their interaction with heteromeric receptor complexes of transmembrane serine/threonine kinases. Both components of the receptor complex, known as receptor I and receptor II are essential for signal transduction. The composition of these complexes can vary significantly due to the promiscuous nature of the ligands and the receptors, and this diversity of interactions can yield a variety of biological responses. Several receptor interacting proteins and potential mediators of signal transduction have now been identified. Recent advances, particularly in our understanding of the function of Mothers against dpp-related (MADR) proteins, are providing new insights into how the TGFβ superfamily signals its diverse biological activities.  相似文献   

    16.
    The seven members of the TRP channel superfamily are divided into two main groups with five members comprising group I (TRPC/V/M/N/A) and TRPML (TRP MucoLipin) and TRPP (TRP Polycystin) making up group II. Group II channels share a high sequence homology on their transmembrane domains and are distinct from group I members as they contain a large luminal/extracellular domain between transmembrane helix 1 (S1) and S2. Since 2016, there are more than ten research papers reporting various structures of group II channels by either cryo-EM or X-ray crystallography. These studies along with recent functional analysis by the other groups have considerably strengthened our knowledge on TRPML and TRPP channels. In this review, we summarize and discuss these reports providing molecular insights into the group II TRP channel family.  相似文献   

    17.
    This article presents a comprehensive review of large and highly diverse superfamily of nucleotidyltransferase fold proteins by providing a global picture about their evolutionary history, sequence-structure diversity and fulfilled functional roles. Using top-of-the-line homology detection method combined with transitive searches and fold recognition, we revised the realm of these superfamily in numerous databases of catalogued protein families and structures, and identified 10 new families of nucleotidyltransferase fold. These families include hundreds of previously uncharacterized and various poorly annotated proteins such as Fukutin/LICD, NFAT, FAM46, Mab-21 and NRAP. Some of these proteins seem to play novel important roles, not observed before for this superfamily, such as regulation of gene expression or choline incorporation into cell membrane. Importantly, within newly detected families we identified 25 novel superfamily members in human genome. Among these newly assigned members are proteins known to be involved in congenital muscular dystrophy, neurological diseases and retinal pigmentosa what sheds some new light on the molecular background of these genetic disorders. Twelve of new human nucleotidyltransferase fold proteins belong to Mab-21 family known to be involved in organogenesis and development. The determination of specific biological functions of these newly detected proteins remains a challenging task.  相似文献   

    18.
    The small leucine-rich proteoglycan (SLRP) family has significantly expanded in the past decade to now encompass five discrete classes, grouped by common structural and functional properties. Some of these gene products are not classical proteoglycans, whereas others have new and unique features. In addition to being structural proteins, SLRPs constitute a network of signal regulation: being mostly extracellular, they are upstream of multiple signaling cascades. They affect intracellular phosphorylation, a major conduit of information for cellular responses, and modulate distinct pathways, including those driven by bone morphogenetic protein/transforming growth factor beta superfamily members, receptor tyrosine kinases such as ErbB family members and the insulin-like growth factor I receptor, and Toll-like receptors. The wealth of mechanistic insights into the molecular and cellular functions of SLRPs has revealed both the sophistication of this family of regulatory proteins and the challenges that remain in uncovering the totality of their functions. This review is focused on novel biological functions of SLRPs with special emphasis on their protein cores, newly described genetic diseases, and signaling events in which SLRPs play key functions.  相似文献   

    19.
    Cascio M 《Biopolymers》2002,66(5):359-368
    The members of the superfamily of nicotinicoid receptors, sometimes referred to as the ligand-gated ion channel superfamily (LGICS), are essential mediators in the propagation of electrical signals between cells at neuronal and neuromuscular synapses. Given the significant sequence and proposed topological similarities between family members, the structural architecture of any one of these neuroreceptors is believed to be archetypic for the family of ligand-gated channels. We have focused our biophysical studies on the glycine receptor (GlyR) since homomeric expression of just the alpha1 chain of the receptor is sufficient to reconstitute native-like activity when expressed in heterologous cells, and we have successfully overexpressed and purified relatively large quantities of this receptor. Our CD data suggests that the historical four transmembrane helix topology model for nicotinicoid receptors may be erroneous. Proteolytic studies as well as chemical modification studies coupled with mass spectroscopy (MS) have provided additional evidence that this model may be inappropriate. While we suggest a novel topological model for the superfamily of nicotinicoid receptors, the absence of high resolution data for the transmembrane regions of these ion channels precludes further refinement of this model. In addition, we observe structural changes in the recombinant alpha1 GlyR as a function of bilayer composition, suggesting that these receptors may be dynamically modulated by cellular control over the properties of the plasma membrane.  相似文献   

    20.
    The amino acid‐polyamine‐organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance‐Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K+ Uptake Permease), BenE (Benzoate:H+ Virginia Symporter), and AE (Anion Exchanger). The topology of the well‐characterized human Anion Exchanger 1 (AE1) conforms to a UraA‐like topology of 14 TMSs (12 α‐helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT‐like fold, defined earlier (Proteins. 2014 Feb;82(2):336‐46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations. Proteins 2014; 82:2797–2811. © 2014 Wiley Periodicals, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号