首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Explaining parasite virulence (harm to the host) represents a major challenge for evolutionary and biomedical scientists alike. Most theoretical models of virulence evolution assume that virulence arises as a direct consequence of host exploitation, the process whereby parasites convert host resources into transmission opportunities. However, infection-induced disease can be immune-mediated (immunopathology). Little is known about how immunopathology affects parasite fitness, or how it will affect the evolution of parasite virulence. Here we studied the effects of immunopathology on infection-induced host mortality rate and lifetime transmission potential – key components of parasite fitness – using the rodent malaria model, Plasmodium chabaudi chabaudi.  相似文献   

2.
The adaptive hypothesis invoked to explain why parasites harm their hosts is known as the trade-off hypothesis, which states that increased parasite transmission comes at the cost of shorter infection duration. This correlation arises because both transmission and disease-induced mortality (i.e. virulence) are increasing functions of parasite within-host density. There is, however, a glaring lack of empirical data to support this hypothesis. Here, we review empirical investigations reporting to what extent within-host viral accumulation determines the transmission rate and the virulence of vector-borne plant viruses. Studies suggest that the correlation between within-plant viral accumulation and transmission rate of natural isolates is positive. Unfortunately, results on the correlation between viral accumulation and virulence are very scarce. We found only very few appropriate studies testing such a correlation, themselves limited by the fact that they use symptoms as a proxy for virulence and are based on very few viral genotypes. Overall, the available evidence does not allow us to confirm or refute the existence of a transmission–virulence trade-off for vector-borne plant viruses. We discuss the type of data that should be collected and how theoretical models can help us refine testable predictions of virulence evolution.  相似文献   

3.
Little TJ  Chadwick W  Watt K 《Parasitology》2008,135(3):303-308
Understanding genetic relationships amongst the life-history traits of parasites is crucial for testing hypotheses on the evolution of virulence. This study therefore examined variation between parasite isolates (the bacterium Pasteuria ramosa) from the crustacean Daphnia magna. From a single wild-caught infected host we obtained 2 P. ramosa isolates that differed substantially in the mortality they caused. Surprisingly, the isolate causing higher early mortality was, on average, less successful at establishing infections and had a slower growth rate within hosts. The observation that within-host replication rate was negatively correlated with mortality could violate a central assumption of the trade-off hypothesis for the evolution of virulence, but we discuss a number of caveats which caution against premature rejection of the trade-off hypothesis. We sought to test if the characteristics of these parasite isolates were constant across host genotypes in a second experiment that included 2 Daphnia host clones. The relative growth rates of the two parasite isolates did indeed depend on the host genotype (although the rank order did not change). We suggest that testing evolutionary hypotheses for virulence may require substantial sampling of both host and parasite genetic variation, and discuss how selection for virulence may change with the epidemiological state of natural populations and how this can promote genetic variation for virulence.  相似文献   

4.
Host mortality, predation and the evolution of parasite virulence   总被引:1,自引:1,他引:0  
One of the most accepted views in the theoretical literature on virulence evolution is that a parasite's virulence will evolve to higher levels when its host's background mortality rate increases. Surprisingly, however, although many sources of background mortality involve predation, there has not yet been any theoretical research that explicitly considers how the dynamics of this important ecological interaction affects virulence evolution. Here, we consider how predation affects virulence evolution by explicitly introducing a predator into a classical susceptible–infected–susceptible epidemiological model. We find that, contrary to previous predictions, different sources of host mortality affect virulence evolution in different ways. Moreover, the way in which virulence evolution is affected depends on how tightly coupled the predator's dynamics are to the host population, and this can result in somewhat counterintuitive results. For example, indirect ecological effects can cause elevated host mortality to result in the evolution of lower parasite virulence, even if this elevated mortality arises from factors unrelated to predation.  相似文献   

5.
Immunopathology (immune-mediated pathology) is a ubiquitous cause of disease during infection, but how will parasite exploitation strategies evolve in its presence? Immunopathology can act to increase parasite fitness if it increases transmission rate, but can equally act to decrease parasite fitness if it increases host mortality. The focus here is on understanding how immunopathology, mediated through different immune mechanisms, can influence parasite fitness and how experimental manipulations of the immune system can be carried out to examine this. A better understanding of how parasite fitness scales with, or responds to, immunopathology is crucial to understanding the nature of selection acting on parasite virulence traits and will allow more informed predictions to be made regarding the trajectory of parasite virulence evolution.  相似文献   

6.
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host’s immune system influences the pathogen’s transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence–transmission trade-offs and evolution in vector-borne pathogen–host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the \({\mathcal {R}}_0\) maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen \({\mathcal {R}}_0\), but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.  相似文献   

7.
Many of the standard predictions in evolutionary epidemiology result from models in which all hosts are equally susceptible to acquiring an infection and equally capable of resisting pathogens once an infection has been established. This contrasts with the empirical reality that natural host populations are typically composed of individuals with various susceptibilities and vulnerabilities to pathogen exploitation that can influence all aspects of a given pathogen's transmission-virulence phenotype. In these structured host settings, host-dependent variation in the virulence-transmission trade-off plays an important role in determining pathogen evolution. By deriving some game-theoretic equilibrium expressions that describe pathogen evolution in heterogeneous host populations, the contribution of host heterogeneity to the direction of evolution in host exploitation is made explicit. Within this framework, qualitative departures from predictions derived from theory utilizing a homogeneous host assumption can be seen as a manifestation of Simpson's paradox in an evolutionary setting. By reconsidering some predictions from homogeneous host theory through the lens of this new perspective, it can be seen that many standard predictions are actually special cases that result when homogeneity in immunity parameters is imposed on host populations.  相似文献   

8.
9.
Mixed pathogenic infections are known to have profound effects on the ecological and evolutionary diversity of both hosts and parasites. Although a variety of mechanisms have been proposed by which hosts can withstand parasitic infections, the role of multiple infections and the trade-off in multiple defence strategies remain relatively unexplored. We develop a stage-structured host-pathogen model to explore the ecological and evolutionary dynamics of host resistance to different modes of infection. In particular, we investigate how the evolution of resistance is influenced through infection by a lethal pathogen and a non-lethal synergist (that only acts to enhance the infectivity of the pathogen). We extend our theoretical framework to explore how trade-offs in the ability to withstand infection by the lethal pathogen and the ability to tolerate the synergist affect the likelihood of coexistence and the evolution of polymorphic host strategies. We show how the underlying structure of the trade-off surface is crucial in the maintenance of resistance polymorphisms. Further, depending on the shape of the trade-off surface, we predict that different levels of host resistance will show individual responses to the presence of non-lethal synergists. Our results are discussed in the wider context of recent developments in understanding the evolution of resistance to pathogen infections and resistance management.  相似文献   

10.
Our current understanding on how pathogens evolve relies on the hypothesis that pathogens' transmission is traded off against host exploitation. In this study, we surveyed the possibility that trade-offs determine the evolution of the bacterial insect pathogen, Xenorhabdus nematophila. This bacterium rapidly kills the hosts it infects and is transmitted from host cadavers to new insects by a nematode vector, Steinernema carpocapsae. In order to detect trade-offs in this biological system, we produced 20 bacterial lineages using an experimental evolution protocol. These lineages differ, among other things, in their virulence towards the insect host. We found that nematode parasitic success increases with bacteria virulence, but their survival during dispersal decreases with the number of bacteria they carry. Other bacterial traits, such as production of the haemolytic protein XaxAB, have a strong impact on nematode reproduction. We then combined the result of our measurements with an estimate of bacteria fitness, which was divided into a parasitic component and a dispersal component. Contrary to what was expected in the trade-off hypothesis, we found no significant negative correlation between the two components of bacteria fitness. Still, we found that bacteria fitness is maximized when nematodes carry an intermediate number of cells. Our results therefore demonstrate the existence of a trade-off in X. nematophila, which is caused, in part, by the reduction in survival this bacterium causes to its nematode vectors.  相似文献   

11.
Progress in understanding the evolution of infectious diseases has inspired proposals to manage the evolution of pathogen (including parasite) virulence. A common view is that social interventions that lower pathogen transmission will indirectly select lower virulence because of a trade-off between transmission and virulence. Here, we argue that there is little theoretical justification and no empirical evidence for this plan. Although a trade-off model might apply to some pathogens, the mechanism appears too weak for rapid selection of substantial changes in virulence. Direct selection against virulence itself might be a more rewarding approach to managing the evolution of virulence.  相似文献   

12.
Pathogens continue to emerge from increased contact with novel host species. Whilst these hosts can represent distinct environments for pathogens, the impacts of host genetic background on how a pathogen evolves post-emergence are unclear. In a novel interaction, we experimentally evolved a pathogen (Staphylococcus aureus) in populations of wild nematodes (Caenorhabditis elegans) to test whether host genotype and genetic diversity affect pathogen evolution. After ten rounds of selection, we found that pathogen virulence evolved to vary across host genotypes, with differences in host metal ion acquisition detected as a possible driver of increased host exploitation. Diverse host populations selected for the highest levels of pathogen virulence, but infectivity was constrained, unlike in host monocultures. We hypothesise that population heterogeneity might pool together individuals that contribute disproportionately to the spread of infection or to enhanced virulence. The genomes of evolved populations were sequenced, and it was revealed that pathogens selected in distantly-related host genotypes diverged more than those in closely-related host genotypes. S. aureus nevertheless maintained a broad host range. Our study provides unique empirical insight into the evolutionary dynamics that could occur in other novel infections of wildlife and humans.Subject terms: Molecular evolution, Bacterial evolution, Bacterial genetics  相似文献   

13.
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within‐host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite‐induced host mortality). Yet we still know little about how within‐host interactions affect the evolution of parasite virulence in multi‐parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within‐host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.  相似文献   

14.
Direct and indirect interactions between insect‐borne pathogens and their host plants are reviewed in the context of theoretical analyses of the evolution of virulence. Unlike earlier theories, which maintained that parasites should evolve to be harmless or even beneficial to their hosts, recent models predict that coevolution between pathogen and host may lead to virulence or avirulence, depending on the pathogen transmission system. The studies reviewed here support the hypothesis that virulence can be advantageous for insect‐borne pathogens of plants. Virulent pathogens may be transmitted more readily by vector insects and are likely to induce stronger disease symptoms, thereby potentially making the plant more attractive to vectors. In contrast, the transmission advantage of virulence for seed‐transmitted pathogens is lower and the costs of virulence are high. Pathogens may sometimes benefit plants via indirect interactions that arise through relationships with other organisms. Evidence for the effects of insect‐borne pathogens on plant competition, herbivory, and parasitism also is reviewed, but few studies have measured the outcome of both direct and indirect interactions. Benefits of pathogen infection that accrue to plants from indirect interactions may sometimes outweigh the direct detrimental effects of virulence.  相似文献   

15.
The optimal virulence of a pathogen is determined by a trade-off between maximizing the rate of transmission and maximizing the duration of infectivity. Treatment measures such as curative therapy and case isolation exert selective pressure by reducing the duration of infectivity, reducing the value of duration-increasing strategies to the pathogen and favoring pathogen strategies that maximize the rate of transmission. We extend the trade-off models of previous authors, and represents the reproduction number of the pathogen as a function of the transmissibility, host contact rate, disease-induced mortality, recovery rate, and treatment rate, each of which may be influenced by the virulence. We find that when virulence is subject to a transmissibility-mortality trade-off, treatment can lead to an increase in optimal virulence, but that in other scenarios (such as the activity-recovery trade-off) treatment decreases the optimal virulence. Paradoxically, when levels of treatment rise with pathogen virulence, increasing control efforts may raise predicted levels of optimal virulence. Thus we show that conflict can arise between the epidemiological benefits of treatment and the evolutionary risks of heightened virulence.  相似文献   

16.
Classical models of virulence evolution conclude that the increased competition favoured by multiple infection will select for increasing consumption and deterioration of the host resource, or 'virulence'. However, recent empirical and theoretical studies suggest that this view of virulence has some shortcomings. Here, we argue that the evolutionary consequences of multiple infection depend critically on whether the exploitation rate of an individual parasite is governed directly by the behaviour of the individual, or whether it is limited by the collective behaviour of the coinfecting group. We illustrate that, depending on the mechanistic details of exploitation, multiple infection can select for reduced virulence.  相似文献   

17.
Many pathogens of medical and veterinary importance have obligatory multihost life cycles. Yet, theoretical models aiming to predict patterns of pathogen reproductive success and the limited empirical data available with which to evaluate them, focus on directly transmitted microparasites. Patterns of host exploitation and the relative fitness of individual pathogen genotypes throughout the different host stages of multihost life cycles have thus remained ignored. We examined correlated responses to artificial selection of Schistosoma mansoni lines selected for high or low infection intensity in the intermediate host. Pathogen fitness in the intermediate host was strongly inversely correlated with pathogen fitness in the definitive host. Moreover, high pathogen infection intensity was associated with decreased, rather than increased, virulence to its intermediate host. These results raise important implications regarding the impact of genetic constraints on the maintenance of genetic and phenotypic polymorphisms in natural populations, the evolution and coevolution of parasite virulence and host specialization, as well as the success of host-directed control programs.  相似文献   

18.
Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host–parasite interactions impact the evolution of host–parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence.  相似文献   

19.
Urbanisation and agriculture cause declines for many wildlife, but some species benefit from novel resources, especially food, provided in human‐dominated habitats. Resulting shifts in wildlife ecology can alter infectious disease dynamics and create opportunities for cross‐species transmission, yet predicting host–pathogen responses to resource provisioning is challenging. Factors enhancing transmission, such as increased aggregation, could be offset by better host immunity due to improved nutrition. Here, we conduct a review and meta‐analysis to show that food provisioning results in highly heterogeneous infection outcomes that depend on pathogen type and anthropogenic food source. We also find empirical support for behavioural and immune mechanisms through which human‐provided resources alter host exposure and tolerance to pathogens. A review of recent theoretical models of resource provisioning and infection dynamics shows that changes in host contact rates and immunity produce strong non‐linear responses in pathogen invasion and prevalence. By integrating results of our meta‐analysis back into a theoretical framework, we find provisioning amplifies pathogen invasion under increased host aggregation and tolerance, but reduces transmission if provisioned food decreases dietary exposure to parasites. These results carry implications for wildlife disease management and highlight areas for future work, such as how resource shifts might affect virulence evolution.  相似文献   

20.
Many pathogens and parasites are transmitted through hosts that differ in species, sex, genotype, or immune status. In addition, virulence (here defined as disease-induced mortality) and transmission can vary during the infectious period within hosts of different state. Most models of virulence evolution assume that transmission and virulence are constant over the infectious period and that the host population is homogenous. Here, we examine a multispecies susceptible-infected-recovered (SIR) model where transmission occurs within and between species, and transmission and virulence varied during the infectious period. This allows us to understand virulence evolution in a broader range of situations that characterize many emerging diseases. Because emerging pathogens are by definition new to their host populations, they should be expected to rapidly adapt after emergence. We illustrate these evolutionary effects using the framework of adaptive dynamics to examine how virulence evolves after emergence in response to the relative strength of selection on pathogen fitness and mutational variance for virulence. We illustrate the role of evolution by simulating adaptive walks to an evolutionarily stable virulence. We found that the magnitude of between-species transmission and the relative timing of transmission and mortality across species were of primary importance for determining the evolutionarily stable virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号