首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
1,25-Dihydroxyvitamin D(3) (vitamin D) and transforming growth factor-beta (TGF-beta) regulate diverse biological processes including cell proliferation and differentiation through modulation of the expression of target genes. Members of the Smad family of proteins function as effectors of TGF-beta signaling pathways whereas the vitamin D receptor (VDR) confers vitamin D signaling. We investigated the molecular mechanisms by which TGF-beta and vitamin D signaling pathways interact in the regulation of the human osteocalcin promoter. Synergistic activation of the osteocalcin gene promoter by TGF-beta and vitamin D was observed in transient transfection experiments. However, in contrast to a previous report by Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. (1999) Science, 283, 1317-1321, synergistic activation was not detectable when the osteocalcin vitamin D response element (VDRE) alone was linked to a heterologous promoter. Inclusion of the Smad binding elements (SBEs) with the VDRE in the heterologous promoter restored synergistic activation. Furthermore, this synergy was dependent on the spacing between VDRE and SBEs. The Smad3-Smad4 heterodimer was found to bind in gel shift assay to two distinct DNA segments of the osteocalcin promoter: -1030 to -989 (SBE3) and -418 to -349 (SBE1). Deletion of SBE1, which is proximal to the VDRE, but not the distal SBE3 in this promoter reporter abolished TGF-beta responsiveness and eliminated synergistic co-activation with vitamin D. Thus the molecular mechanism, whereby Smad3 and VDR mediate cross-talk between the TGF-beta and vitamin D signaling pathways, requires both a VDRE and a SBE located in close proximity to the target promoter.  相似文献   

2.
In this study, we address whether TGFbeta signaling mediates vitamin D3 analog-induced growth inhibition in nonmalignant and malignant breast cells. Normal mammary epithelial cells (184), immortalized nonmalignant mammary epithelial cells (184A1 and MCF10A), and breast cancer cells (early passage MCF7: MCF7E) were sensitive to the inhibitory effects of vitamin D3 analogs (EB1089 and MC1288) while late passage MCF7 breast cancer (MCF7L) cells were relatively resistant. A similar pattern of sensitivity to TGFbeta was observed with these cells. Thus, the sensitivity to the vitamin D3 analogs correlated with the sensitivity to TGFbeta. MCF7L TGFbetaRII-transfected cells, which have autocrine TGFbeta activity, were more sensitive to EB1089 than MCF7L cells. TGFbeta neutralizing antibody was found to block the inhibitory effects of these analogs. These results are consistent with the idea that autocrine TGFbeta signaling mediates the anti-proliferative effects of the vitamin D3 analogs in these cells. The expression of TGFbeta isoforms and/or TGFbeta receptors was induced by the analogs in the vitamin D3 and TGFbeta sensitive cells. Vitamin D3 analogs did not induce TGFbeta or TGFbeta receptor expression in the resistant MCF7L cells. Therefore, EB1089 induces autocrine TGFbeta activity through increasing expression of TGFbeta isoforms and/or TGFbeta receptors. In addition, EB1089 induced nuclear VDR protein levels in the sensitive 184A1 cells but not in the resistant MCF7L cells. 184A1 cells were more sensitive to EB1089-induced VDR-dependent transactivation than MCF7L cells as measured by a luciferase reporter construct containing the VDRE, indicating a defect of VDR signaling in MCF7L cells. Smad3, a TGFbeta signaling mediator, coactivated VDR-dependent transactivation in 184A1 cells but not in MCF7L cells. These results indicate that Smad3 coactivates VDR to further enhance TGFbeta signaling and vitamin D3 signaling in the sensitive 184A1 cells. The results also indicate that Smad3 is not of itself sufficient to coactivate VDR in TGFbeta/vitamin D3 resistant MCF7L cells and other factors are required. We found that the PI 3-kinase pathway inhibitor LY29004 inhibited the synergy of TGFbeta and EB1089 on VDR-dependent transactivation activity. This indicates that the crosstalk between TGFbeta and vitamin D signaling is also PI 3-kinase pathway dependent.  相似文献   

3.
4.
5.
6.
7.
Previously, we demonstrated the pivotal role of the vitamin D receptor (VDR) in mediating the butyrate-induced differentiation in colon cancer cells. Smad 3, a downstream component of transforming growth factor-beta (TGFbeta) signaling, has been shown to act as a coactivator of VDR and to possibly regulate the vitamin D signaling pathway. In this study, we demonstrate a distinct impact of the TGFbeta/Smad 3-signaling pathway in the butyrate-mediated VDR expression and induction of differentiation. Butyrate treatment resulted in a significant induction of the phosphorylation level of Smad 3, while the combination of butyrate and a specific TGFbeta1-antibody or a TGFbeta-receptor inhibitor considerably diminished the butyrate-induced upregulation of VDR expression. Using a specific inhibitor, we were also able to demonstrate an involvement of the p38 MAPK in the increase of Smad 3 phosphorylation following butyrate treatment, thus opening the view to further elucidate possible mechanisms mediating the upregulation of VDR expression following butyrate treatment in colon cancer cells.  相似文献   

8.
9.
Activated pancreatic stellate cells (PSCs) play major roles in promoting pancreatic fibrosis. We previously reported that angiotensin II (Ang II) enhances activated PSC proliferation through EGF receptor transactivation. In the present study, we elucidated a novel intracellular mechanism by which Ang II stimulates cellular proliferation. TGF-beta1 inhibits activated PSC proliferation via a Smad3 and Smad4-dependent pathway in an autocrine manner. We demonstrated that Ang II inhibited TGF-beta1-induced nuclear accumulation of Smad3 and Smad4. Furthermore, Ang II rapidly induced inhibitory Smad7 mRNA expression. Adenovirus-mediated Smad7 overexpression inhibited TGF-beta1-induced nuclear accumulation of Smad3 and Smad4, and potentiated activated PSC proliferation. PKC inhibitor Go6983 blocked the induction of Smad7 mRNA expression by Ang II. In addition, 12-O-tetradecanoyl-phorbol 13-acetate, a PKC activator, increased Smad7 mRNA expression. These results suggest that Ang II enhances activated PSC proliferation by blocking autocrine TGF-beta1-mediated growth inhibition by inducing Smad7 expression via a PKC-dependent pathway.  相似文献   

10.
Smad7 is overexpressed in 50% of human pancreatic cancers. COLO-357 pancreatic cancer cells engineered to overexpress Smad7 are resistant to the actions of transforming growth factor-beta1 (TGF-beta1) with respect to growth inhibition and cisplatin-induced apoptosis but not with respect to modulation of gene expression. To delineate the mechanisms underlying these divergent consequences of Smad7 overexpression, we studied the effects of Smad7 on TGF-beta1-dependent signaling pathways and cell cycle regulating proteins. TGF-beta1 induced the phosphorylation of MAPK, p38 MAPK, and AKT2 irrespective of the levels of Smad7, and inhibitors of these pathways did not alter TGF-beta1 actions on cell growth. By contrast, Smad7 overexpression interfered with TGF-beta1-mediated attenuation of cyclin A and B levels, inhibition of cdc2 dephosphorylation and CDK2 inactivation, up-regulation of p27, and the maintenance of the retinoblastoma protein (RB) in a hypophosphorylated state. Smad7 also suppressed TGF-beta1-mediated inhibition of E2F activity but did not alter TGF-beta1-mediated phosphorylation of Smad2, the nuclear translocation of Smad2/3/4, or DNA binding of the Smad2/3/4 complex. Although Smad7 did not associate with the type I TGF-beta receptor (TbetaRI), SB-431542, an inhibitor of the kinase activity of this receptor, blocked TGF-beta1-mediated effects on Smad-2 phosphorylation. These findings point toward a novel paradigm whereby Smad7 acts to functionally inactivate RB and de-repress E2F without blocking the activation of TbetaRI and the nuclear translocation of Smad2/3, thereby allowing for TGF-beta1 to exert effects in a cancer cell that is resistant to TGF-beta1-mediated growth inhibition.  相似文献   

11.
Transforming growth factor-beta1 (TGF-beta1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-beta type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-beta/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-beta1 signaling and the role of endoglin for both pathways in endoglin-deficient L(6)E(9) cells. In this myoblastic cell line, TGF-beta1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-beta1) are two examples. TGF-beta1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-beta1-induced collagen I expression and (CAGA)(12)-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-beta1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway.  相似文献   

12.
13.
14.
Smad4 mediates signaling by the transforming growth factor-beta (TGF-beta) superfamily of cytokines. Smad signaling is negatively regulated by inhibitory (I) Smads and ubiquitin-mediated processes. Known mechanisms of proteasomal degradation of Smads depend on the direct interaction of specific E3 ligases with Smads. Alternatively, I-Smads elicit degradation of the TGF-beta receptor by recruiting the WW and HECT domain E3 ligases, Smurfs, WWP1, or NEDD4-2. We describe an equivalent mechanism of degradation of Smad4 by the above E3 ligases, via formation of ternary complexes between Smad4 and Smurfs, mediated by R-Smads (Smad2) or I-Smads (Smad6/7), acting as adaptors. Smurfs, which otherwise cannot directly bind to Smad4, mediated poly-ubiquitination of Smad4 in the presence of Smad6 or Smad7. Smad4 co-localized with Smad7 and Smurf1 primarily in the cytoplasm and in peripheral cell protrusions. Smad2 or Smad7 mutants defective in Smad4 interaction failed to induce Smurf1-mediated down-regulation of Smad4. A Smad4 mutant defective in Smad2 or Smad7 interaction could not be effectively down-regulated by Smurf1. We propose that Smad4 is targeted for degradation by multiple ubiquitin ligases that can simultaneously act on R-Smads and signaling receptors. Such mechanisms of down-regulation of TGF-beta signaling may be critical for proper physiological response to this pathway.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号