首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A halotolerant plant-growth-promoting rhizobacteria (PGPR) can ameliorate salt stress in associated plants by various mechanisms. Therefore, the present study aimed to characterize a PGPR Klebsiella sp. SBP-8 for its ability to tolerate salt stress and to study the mechanism of PGPR-mediated mitigation of salt stress in the wheat plant. The abiotic stressors result in multiple changes in the fatty acid composition of Klebsiella sp. SBP-8, helping the membrane to keep its integrity, fluidity, and function for its growth under salt (NaCl) stress conditions. The changes in fatty acid composition of test organism were analyzed by fatty acid methyl ester (FAME) analysis under varying saline conditions. The spectroscopy (GC-MS) profile of cell extract at different salt concentrations was comprised of hydrocarbons, and fatty alcohols with varying carbon chain length. Inoculation of Klebsiella sp. SBP-8 to wheat seedling showed increase in proline, total soluble sugar, and total protein content of treated plants. Bacterial inoculation also decreased the concentration of salinity-induced malondialdehyde (MDA) content. In addition, bacterial inoculation also increased the various antioxidative enzymes like superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) in treated plants. It is likely that bacterial inoculation alleviated the salt stress to wheat plant by co-ordination of antioxidative machinery, and improvement in osmolyte contents. Therefore, the present study suggests that bacterial-inoculated wheat plants were able to cope better with salt stress than uninoculated control, therefore it can serve as a promising bio-inoculant for enhancing the growth of wheat like cereal crops under saline stress.  相似文献   

2.
The paper presents the results of experimental assessment of the quality parameters of wheat grain infested with the rice weevil Sitophilus oryzae and of flour and bread produced from this grain. The most important and the least stable parameters were the flour yield, ash content, whiteness, and fat acidity value. The infested grain had higher densities of micrococci, yeast, Aspergillus glaucus, and A. candidus.  相似文献   

3.
A new psyllid species, Cacopsylla biwa Inoue, sp. nov., is described from Tokushima Prefecture, Shikoku, Japan. This new species develops only on Eriobotrya japonica (Thunb.) Lindl. (Rosaceae), causing severe damage to its fruits and flowers. It is strongly suspected that C. biwa is an alien species. Morphological similarities and host-plant relationships indicate that C. biwa is most closely related to Cacopsylla eriobotryae (Yang) comb. nov. (transferred from Edentatipsylla Li), which occurs in Taiwan and feeds on Eriobotrya deflexa (Hemsl.) Nakai. Morphological diagnostic characteristics of C. biwa and differences from the other congeners are discussed. Information is provided on the biology and life cycle of the new species.  相似文献   

4.

Key message

A comprehensive comparison of LMW-GS genes between Ae. tauschii and its progeny common wheat.

Abstract

Low molecular weight glutenin subunits (LMW-GSs) are determinant of wheat flour processing quality. However, the LMW-GS gene composition in Aegilops tauschii, the wheat D genome progenitor, has not been comprehensively elucidated and the impact of allohexaploidization on the Glu-D3 locus remains elusive. In this work, using the LMW-GS gene molecular marker system and the full-length gene-cloning method, LMW-GS genes at the Glu-D3 loci of 218 Ae. tauschii and 173 common wheat (Triticum aestivum L.) were characterized. Each Ae. tauschii contained 11 LMW-GS genes, and the whole collection was divided into 25 haplotypes (AeH01–AeH25). The Glu-D3 locus in common wheat lacked the LMW-GS genes D3-417, D3-507 and D3-552, but shared eight genes of identical open reading frame (ORF) sequences when compared to that of Ae. tauschii. Therefore, the allohexaploidization induces deletions, but exerts no influence on LMW-GS gene coding sequences at the Glu-D3 locus. 92.17% Ae. tauschii had 7-9 LMW-GSs, more than the six subunits in common wheat. The haplotypes AeH16, AeH20 and AeH23 of Ae. tauschii ssp. strangulate distributed in southeastern Caspian Iran were the main putative D genome donor of common wheat. These results facilitate the utilization of the Ae. tauschii glutenin gene resources and the understanding of wheat evolution.
  相似文献   

5.
Associations of cyanobacteria with actinomycetes are not being investigated. The purpose of this study is to investigate the biological aspects of coexistence of the free-living Anabaena variabilis with actinomycetes isolated from apogeotropic roots of Strangeria eriopus and Cycas micholitzii; with the cyanobacterium Oscillatoria terebriformis (Ag.) Elenk. emend., which were isolated from the natural cyanobacterial mat taken from the Kamchatkan thermal spring; and with actinomycetes isolated from the accumulating culture of cyanobacterium. Positive tropism of actinomycete hyphae to cyanobacterial trichomes and that of the cyanobacterium to streptomycetes were observed. Stimulation of growth of O. terebriformis in the associated culture with the streptomycete was recorded. The increase of fixation of nitrogen by A. variabilis and of photosynthetic activity of O. terebriformis in the associated culture with the streptomycete was recorded.  相似文献   

6.
The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.  相似文献   

7.
The ability of Bacillus subtilis Cohn and Bacillus thuringiensis Berliner to induce systemic resistance in wheat plants to the casual agent of Septoria nodorum Berk., blotch has been studied. It has been shown that strains of Bacillus ssp. that possess the capacity for endophytic survival have antagonistic activity against this pathogen in vitro. A reduction of the degree of Septoria nodorum blotch development on wheat leaves under the influence of Bacillus spp. was accompanied by the suppression of catalase activity, an increase in peroxidase activity and H2O2 content, and expression of defence related genes such us PR-1, PR-6, and PR-9. It has been shown that B. subtilis 26 D induces expression levels of wheat pathogenesis-related (PR) genes which marks a SA-dependent pathway of sustainable development and that B. thuringiensis V-5689 and V-6066 induces a JA/ET-dependent pathway. These results suggest that these strain Bacillus spp. promotes the formation of wheat plant resistance to S. nodorum through systemic activation of the plant defense system. The designed bacterial consortium formed a complex biological response in wheat plants infected phytopathogen.  相似文献   

8.
At least two billion people around the world suffer from micronutrient deficiency, or hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency. As a key staple food crop, wheat provides 20% of the world’s dietary energy and protein, therefore wheat is an ideal vehicle for biofortification. Developing biofortified wheat varieties with genetically enhanced levels of grain zinc (Zn) and iron (Fe) concentrations, and protein content provides a cost-effective and sustainable solution to the resource-poor wheat consumers. Large genetic variation for Fe and Zn were found in the primitive and wild relatives of wheat, the potential high Zn and Fe containing genetic resources were used as progenitors to breed high-yielding biofortified wheat varieties with 30–40% higher Zn content. Grain protein content (GPC) determines processing and end-use quality of wheat for making diverse food products. The GPC-B1 allele from Triticum turgidum L. var. dicoccoides have been well characterized for the increase in GPC and the associated pleiotropic effect on grain Zn and Fe concentrations in wheat. In this study effect of GPC-B1 allele on grain Zn and Fe concentrations in wheat were measured in different genetic backgrounds and two different agronomic management practices (with- and without foliar Zn fertilization). Six pairs of near-isogenic lines differing for GPC-B1 gene evaluated at CIMMYT, Mexico showed that GPC-B1 influenced marginal increase for grain Zn, Fe concentrations, grain protein content and slight reduction in kernel weight and grain yield. However, the magnitude of GPC and grain Zn and Fe reductions varied depending on the genetic background. Introgression of GPC-B1 functional allele in combination with normal or delayed maturity alleles in the CIMMYT elite wheat germplasm has the potential to improve GPC and grain Zn and Fe concentrations without the negative effect on grain yield due to early senescence and accelerated maturity.  相似文献   

9.
10.
Gibberellin-sensitive dwarfing gene Rht18 was mapped in two durum wheat recombinant inbred lines (RIL) populations developed from crosses, Bijaga Yellow/Icaro and HI 8498/Icaro. Rht18 was mapped within genetic interval of 1.8 cM on chromosome 6A. Simple sequence repeat (SSR) markers S470865SSR4, barc37 and TdGA2ox-A9 specific marker showed co-segregation with Rht18 in Bijaga Yellow/Icaro population consisting 256 RILs. Effect of Rht18 on plant height was validated in HI 8498/Icaro RIL population which segregated for Rht18 and Rht-B1b. Rht-B1b from HI 8498 showed pleiotropic effect on plant height and coleoptile length, on the other hand, Rht18 did not show effect on coleoptile length. The SSR and SNP markers linked to Rht18 were also validated by assessing their allelic frequency in 89 diverse durum and bread wheat accessions. It was observed that 204 bp allele of S470865SSR4 could differentiate Icaro from rest of the wheat accessions except HI 8498, suggesting its utility for selection of Rht18 in wheat improvement programs. Rht18 associated alleles of TdGA2ox-A9, IAW4371 and IAW7940 were absent in most of the tall Indian local durum wheat and bread wheat, hence could be used to transfer Rht18 to bread wheat and local durum wheat. SSR marker barc3 showed high recombination frequency with Rht18, though it showed allele unique to Icaro. Since semidwarf wheat with GA-sensitive dwarfing genes are useful in dry environments owing to their longer coleoptile, better emergence and seedling vigor, Rht18 may provide a useful alternative to widely used GA-insensitive dwarfing genes under dry environments.  相似文献   

11.
Invasive insects and plants are major threats to the health and viability of North American forests. Emerald ash borer (Agrilus planipennis) (EAB) may cause extensive changes to forest composition due to rapid ash (Fraxinus spp.) mortality. Invasive shrubs like Amur honeysuckle (Lonicera maackii) may benefit from EAB and have negative effects on woody seedlings. We predict that ash mortality has positive effects on seedling abundance, recruitment, and survival, but that these effects are influenced by L. maackii basal area and/or cover. We sampled 16 sites, representing a chronosequence of ash mortality throughout western Ohio. We tested whether L. maackii growth and fecundity varied in relation to ash decline. We also investigated effects of ash decline, stand basal area (BA), L. maackii BA and percent cover on woody seedling abundance, recruitment, and survival using linear mixed models evaluated with Akaike’s Information Criterion. These same responses were also investigated for four seedling groups: L. maackii, invasive plants (excluding L. maackii), shade tolerant natives, and shade intolerant natives. We found a significant positive relationship between ash decline and L. maackii BA growth. Lower seedling species richness corresponded with greater L. maackii BA and better ash condition. Greater L. maackii BA was also associated with lower seedling abundance and recruitment, as well as abundance and recruitment of shade-tolerant species, and recruitment of shade-intolerant species. Sites with poorer ash condition and greater L. maackii BA had more L. maackii seedlings. These findings indicate that the negative effects of L. maackii are more important to future forest composition than ash decline; however ash decline increases L. maackii growth, hence exacerbating the effects of this invasive shrub.  相似文献   

12.
Sven Becker 《Hydrobiologia》2010,644(1):159-168
Bioassays with the toxic cyanobacterium Microcystis aeruginosa PCC 7806, its non-toxic mutant ΔmcyB, and Daphnia magna as grazer were used to evaluate biotic factors in induced defence, in particular cyanobacterial and grazer-released info-chemicals. Three main questions were addressed in this study: Does Daphnia grazing lead to a loss of cyanobaterial biomass? Is the survival time of Daphnia shorter in a culture of the toxic cyanobacterium? Does direct grazing or the presence of spent Daphnia medium or a high number of disrupted toxic Microcystis cells in the assays lead to an increase in the cellular microcystin content in the remaining intact cells? The biovolume (growth) as well as size and abundance of Microcystis aggregates were determined by particle analysis, while the survival time of Daphnia individuals was recorded by daily observation and counting, with the relative concentration of cell-bound microcystin-LR, was measured by HPLC analysis. Compared to some recent studies in the field of induced defence, in this study, evidence was found for a direct grazing effect, i.e. the loss of biovolume in the toxic culture. In addition, Daphnia magna ingested more non-toxic than toxic cells, and survived longer with non-toxic cells. In terms of increased cell-bound toxin concentration as a means of defence reported in some studies, a higher cell-bound microcystin-LR content was not measured in this study in any of the treatments (P > 0.05). Under low light conditions with impaired growth of Microcystis, and the presence of a high number of particles with less than 1-μm diameter (possibly heterotrophic bacteria), Daphnia medium was associated with a strong reduction in cell-bound toxin concentration (P < 0.05). This study showed no increased cell aggregation under direct grazing (P > 0.05), but increased aggregation with spent Daphnia medium under high light conditions (P < 0.05). Further, the addition of cell-free extract from disrupted toxic Microcystis cells strongly increased the aggregation of the intact cells under low light (P < 0.05). These findings are discussed with the possible role of microcystin and other infochemicals in the expression of proteins and morphology changes in Microcystis.  相似文献   

13.
Nitrogen (N) is the primary limiting factor for crop growth, development, and productivity. Transgenic technology is a straightforward strategy for improving N assimilation in crops. The present study assessed the effects of maize C4 phosphoenolpyruvate carboxylase (ZmPEPC) gene overexpression on N assimilation in three independent transgenic lines and wild-type (WT) wheat (Triticum aestivum L.). The transgenic wheat lines depicted ZmPEPC overexpression and higher PEPC enzyme activity relative to that in the WT. The leaves of the transgenic wheat lines subjected to low N treatment showed an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) expression, content, and carboxylase activity. The transgenic wheat lines also depicted an upregulation of genes associated with the anaplerotic pathway for the TCA cycle, suggesting that more carbon (C) skeleton material is being allocated for N assimilation under low N conditions. Furthermore, ZmPEPC expression in transgenic wheat lines induced the upregulated of genes associated primary N metabolism, including TaNR, TaGS2, TaGOGAT, TaAspAT, and TaASN1. The average total free amino acid content in the transgenic wheat lines was 48.18% higher than that in the WT, and asparagine (Asn), glutamine (Gln), aspartic acid (Asp), and serine (Ser) were also markedly enhanced. In addition, elementary analysis showed that N and C content, and the biomass of the transgenic wheat lines increased with low N treatment. Yield trait analysis indicated that ZmPEPC overexpression improved grain yield by increasing 1000-grain weight. In conclusion, ZmPEPC overexpression in wheat could modulate C metabolism, significantly improve N assimilation, enhances growth, and improves yield under low N conditions.  相似文献   

14.
Nearly 2 billion people worldwide are suffering from iron (Fe) deficiency anemia and zinc (Zn) deficiency. The available elite bread wheat cultivars have inherently low grain micronutrient content. Biofortification for grain Fe and Zn content is one of the most feasible and cost-effective approach for combating widespread deficiency of the micronutrients. QTL controlling high grain Fe and Zn have been mapped on groups 2 and 7 chromosomes of Triticeae. The present study was initiated for precise transfers of genes for high grain Fe and Zn on group 2 and 7 chromosomes of wheat-Aegilops substitution lines to wheat cultivars using pollen radiation hybridization. The pollen radiation hybrids (PRH1) derived from 1.75 krad irradiated spikes showed the presence of univalents and multivalents in meiotic metaphase-I indicating the effectiveness of radiation dose. In the advanced generation PRH5, the plants selected with stable chromosome number and high grain Fe and Zn content were analyzed with wheat groups 2 and 7 chromosome specific intron targeted amplified polymorphism (ITAP) markers of the metal homeostasis genes to monitor the transfers of alien genes from the substituted Aegilops chromosomes. The group 2 chromosome derivatives showed the presence of NAS2, FRO2, VIT1, and ZIP2 Aegilops genes whereas the group 7 derivatives had YSL15, NAM, NRAMP5, IRO3, and IRT2 Aegilops genes. The pollen radiation hybrids of both the groups 2 and 7 chromosomes showed more than 30% increase in grain Fe and Zn content with improved yield than the elite wheat cultivar PBW343 LrP indicating small and compensating transfers of metal homeostasis genes of Aegilops into wheat.  相似文献   

15.
Three species of cecidomyiid midges (Diptera: Cecidomyiidae), whose larvae overwinter in the soil, can cause significant yield losses on wheat in Europe: the orange wheat blossom midge, Sitodiplosis mosellana (Géhin), the yellow wheat blossom midge, Contarinia tritici (Kirby), and the saddle gall midge, Haplodiplosis marginata (von Roser). The biological control of wheat midges by their parasitoids can contribute to reduce the midge populations. Soil samples were collected in several fields in Belgium in 2012–2014 in order to characterize the parasitism rates and parasitoid complexes in overwintering larvae. The parasitism rates varied greatly between the sampled fields: 3–100, 0–100 and 2% for S. mosellana, H. marginata and C. tritici, respectively. The parasitism rate was not related to the larval density of wheat midge. The three wheat midges have totally distinct parasitoid complexes in Belgium. Eight species (Hymenoptera: Pteromalidae and Platygastridae) were found as parasitoid of S. mosellana: Macroglenes penetrans (Kirby), Amblypasis tritici (Walker), Euxestonotus error (Fitch), Euxestonutus sp. Fouts, Leptacis sp. Foerster, Platygaster gracilipes (Huggert), Platygaster nisus Walker, and Platygaster tuberosula (Kieffer). According to their abundance, M. penetrans, E. error and P. tuberosula appeared as the main parasitoids of S. mosellana in Belgium. For the two other wheat midges, only one species of the family Platygastridae was found for each midge: Platygaster equestris (Spittler) for H. marginata and Synopeas myles (Walker) for C. tritici.  相似文献   

16.
17.
18.
Powdery mildew, caused by Blumeria graminis f.sp. tritici (Bgt), is a destructive foliar disease of common wheat in areas with cool or maritime climates. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the progenitor of both domesticated tetraploid durum wheat and hexaploid bread wheat, harbors abundant genetic diversity related to resistance to powdery mildew that can be utilized for wheat improvement. An F2 segregating population was obtained from a cross between resistant bread wheat line 2L6 and susceptible cultivar Liaochun 10, after which genetic analysis of F2 and F2-derived F3 families was performed by inoculating plants with isolate Bgt E09. The results of this experiment demonstrated that powdery mildew resistance in 2L6, which was derived from wild emmer wheat accession IW30, was controlled by a single dominant gene, temporarily designated MLIW30. Nineteen SSR markers and two STS markers linked with MLIW30 were acquired by applying bulked segregant analysis. Finally, MLIW30 was located to the long arm of chromosome 4A and found to be flanked by simple sequence repeat markers XB1g2000.2 and XB1g2020.2 at 0.1 cM. Because no powdery mildew resistance gene in or derived from wild emmer wheat has been reported in wheat chromosome 4A, MLIW30 might be a novel Pm gene.  相似文献   

19.
Powdery mildew, a wheat (Triticum aestivum L.) foliar disease caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici, imposes a constant challenge on wheat production in areas with cool or maritime climates. This study was conducted to identify and transfer the resistance gene in the newly identified common wheat accession ‘D29’. Genetic analysis of the F2 population derived from a cross of D29 with the susceptible elite cultivar Y158 suggested a single dominant gene is responsible for the powdery mildew resistance in this germplasm. This gene was mapped to chromosome 2AL in a region flanked by microsatellite markers Xgdm93 and Xhbg327, and co-segregated with sequence-tagged site (STS) markers Xsts_bcd1231 and TaAetPR5. An allelic test indicated that the D29 gene was allelic to the Pm4 locus. To further evaluate the resistance conferred by this gene and develop new germplasms for breeding, this gene, as well as Pm4a and Pm4b, was transferred to Y158 through backcross and marker-assisted selection. In the resistance spectrum analysis, the D29 gene displayed a resistance spectrum distinguishable from the other Pm4 alleles, including Pm4a, Pm4b, and Pm4c, and thus was designated as Pm4e. The identification of new allelic variation at the Pm4 locus is important for understanding the resistance gene evolution and for breeding wheat cultivars with powdery mildew resistance.  相似文献   

20.
A total of 27Fusarium culmorum isolates from Germany and 41F. graminearum isolates from Kenya were investigated for aggressiveness and mycotoxin production on wheat ears. In addition, ergosterol content of the kernels from ears inoculated withF. graminearum was determined and theF. culmorum isolates were tested for mycotoxin productionin vitro. For both pathogens, isolates markedly differed in aggressiveness. 59% and 37% of theF. culmorum isolates produced NIV and DON, respectively,in vivo andin vitro. The DON-producing isolates also produced 3-acDONin vitro. The more aggressive isolates produced mainly DON while the less aggressive isolates produced mainly NIV. 12% and 85% of theF. graminearum isolates produced NIV and DON, respectively. The highly aggressive isolates produced higher amounts of DON, aggressiveness being highly correlated to DON content in the kernels. NIV-producing isolates were less aggressive. Ergosterol content of kernels was moderately correlated to aggressiveness but highly correlated to DON content. Disease severity was associated with kernel weight reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号