首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cytochrome P450c17, a steroidogenic enzyme encoded by the CYP17A1 gene, catalyzes the steroid 17α-hydroxylation needed for glucocorticoid synthesis, which may or may not be followed by 17,20 lyase activity needed for sex steroid synthesis. Whether or not P450c17 catalyzes 17,20 lyase activity is determined by three post-translational mechanisms influencing availability of reducing equivalents donated by P450 oxidoreductase (POR). These are increased amounts of POR, the allosteric action of cytochrome b5 to promote POR-P450c17 interaction, and Ser/Thr phosphorylation of P450c17, which also appears to promote POR-P450c17 interaction. The kinase(s) that phosphorylates P450c17 is unknown. In a series of kinase inhibition experiments, the pyridinyl imidazole drugs SB202190 and SB203580 inhibited 17,20 lyase but not 17α-hydroxylase activity in human adrenocortical HCI-H295A cells, suggesting an action on p38α or p38β. Co-transfection of non-steroidogenic COS-1 cells with P450c17 and p38 expression vectors showed that p38α, but not p38β, conferred 17,20 lyase activity on P450c17. Antiserum to P450c17 co-immunoprecipitated P450c17 and both p38 isoforms; however, knockdown of p38α, but not knockdown of p38β, inhibited 17,20 lyase activity in NCI-H295A cells. Bacterially expressed human P450c17 was phosphorylated by p38α in vitro at a non-canonical site, conferring increased 17,20 lyase activity. This phosphorylation increased the maximum velocity, but not the Michaelis constant, of the 17,20 lyase reaction. p38α phosphorylates P450c17 in a fashion that confers increased 17,20 lyase activity, implying that the production of adrenal androgens (adrenarche) is a regulated event.  相似文献   

2.
Cytochrome P450c17 catalyzes the 17alpha-hydroxylase activity required for glucocorticoid synthesis and the 17,20 lyase activity required for sex steroid synthesis. Most P450 enzymes have fixed ratios of their various activities, but the ratio of these two activities of P450c17 is regulated post-translationally. We have shown that serine phosphorylation of P450c17 and the allosteric action of cytochrome b5 increase 17,20 lyase activity, but it has not been apparent whether these two post-translational mechanisms interact. Using purified enzyme systems, we now show that the actions of cytochrome b5 are independent of the state of P450c17 phosphorylation. Suppressing cytochrome b5 expression in human adrenal NCI-H295A cells by >85% with RNA interference had no effect on 17alpha-hydroxylase activity but reduced 17,20 lyase activity by 30%. Increasing P450c17 phosphorylation could compensate for this reduced activity. When expressed in bacteria, human P450c17 required either cytochrome b5 or phosphorylation for 17,20 lyase activity. The combination of cytochrome b5 and phosphorylation was not additive. Cytochrome b5 and phosphorylation enhance 17,20 lyase activity independently of each other, probably by increasing the interaction between P450c17 and NADPH-cytochrome P450 oxidoreductase.  相似文献   

3.
The two steps in the side-chain cleavage of C21 steroids to give C19 steroids (i.e. 17 alpha-hydroxylation and C17,20 lyase activity) were examined using a highly purified cytochrome P-450 from microsomes of neonatal pig testis to determine the photochemical action spectra for the two reactions. Photochemical action spectra, using either 4-ene (progesterone) or 5-ene (pregnenolone) substrates, showed maximal reversal of inhibition by CO with light of 451 nm. Evidently the heme of cytochrome P-450 is involved in both 17 alpha-hydroxylation and in C17,20-lyase activity as in the case of the side-chain cleavage of cholesterol. Mechanisms proposed to account for enzymatic cleavage of the alpha-ketol side-chain of C21 steroids (C17,20 lyase activity) must be consistent with these findings.  相似文献   

4.
5.
In order to understand the activity specificity of the hamster cytochrome P450 17 alpha-hydroxylase/17,20-lyase (P450c17), we have studied its structure/activity using three hamster P450c17 recombinant mutants (T202N/D240N/D407H). In transiently transfected COS-1 cells, the mutation T202N reduced 17 alpha-hydroxylation of pregnenolone and progesterone to 24 and 44% of wild type (WT), respectively, followed by reduced 17,20-cleavage to 71 and 67%, respectively. On the other hand, the mutation D240N decreased specifically 17,20-lyase activity to 61% of WT when incubated with pregnenolone while the mutation D407H only decreased 17 alpha-hydroxylation to 46% when incubated with progesterone.To comprehend the altered activity profiles of these hamster P450c17 mutants, we have elaborated a 3D model of the hamster P450c17 and compared it to our preceding model of the human P450c17. Analysis of the mutants with this model showed that, without direct contact to the substrates, these mutations transmit structural changes to the active site. By analogy, these results support the concept that any cellular changes modifying the external structure of P450c17, such as phosphorylation, could have influence on its active site and enzymatic activities.  相似文献   

6.
Mouse epidermal cytosol contains a protein phosphatase with Mr 38,000, which dephosphorylates the elongation factor 2 (EF-2) of protein biosynthesis and is stimulated after topical application of TPA to mouse skin [(1988) Biochem. Biophys. Res. Commun. 153, 1129-1135]. Dephosphorylation of EF-2 by this phosphatase is inhibited by okadaic acid at concentrations as low as 10(-8) M, but not by heparin up to concentrations of 600.micrograms/ml. The catalytic subunit of protein phosphatase 2A (PP2Ac) with EF-2 as a substrate exhibits the same sensitivity towards okadaic acid and insensitivity towards heparin as the EF-2 phosphatase of epidermal cytosol. The catalytic subunit of protein phosphatase 1 (PP1c) is strongly suppressed by heparin and less sensitive towards okadaic acid than PP2Ac. PP2Ac is around 50 times more efficient in dephosphorylating EF-2 than PP1c. These data indicate that the TPA-stimulated EF-2 phosphatase in epidermal cytosol is a type 2A protein phosphatase.  相似文献   

7.
《Reproductive biology》2022,22(3):100668
SET is a multifunctional protein involved in a variety of molecular processes such as cell apoptosis and cell-cycle regulation. In ovaries SET is predominantly expressed in theca cells and oocytes. In polycystic ovary syndrome (PCOS) patients the expression of SET was increased than healthy people. The current study was designed to determine whether SET plays a role in oocyte maturation and apoptosis, which may provide clues for the underlying pathological mechanism of follicular development in PCOS patients. Oocytes at germinal vesicle (GV) stage were collected from 6-week-old female ICR mice ovaries. The expression of SET was manipulated by AdCMV-SET and AdH1-SiRNA/SET adenoviruses. SET overexpression improved oocyte maturation whereas SET knockdown inhibited oocyte maturation. Moreover, SET negatively regulated serine/threonine protein phosphatase 2A (PP2A) activity in oocytes. Treatment with PP2A inhibitor okadaic acid (OA) promoted oocyte maturation. Furthermore, PP2A knockdown confirmed the role of PP2A in oocyte maturation, and OA was able to block the AdH1-SiRNA/SET-mediated inhibition on oocyte maturation. The central role of PP2A in SET-mediated regulation of oocyte maturation was confirmed by the finding that SET increased the expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) and PP2A inhibited their expressions. Besides, SET inhibited oocyte apoptosis through decreasing the expression of caspase 3 and caspases 8, while PP2A had no effect on oocyte apoptosis. SET promoted oocyte maturation by inhibiting PP2A activity and inhibited oocyte apoptosis in mouse in-vitro cultured oocytes, which may provide a pathologic pathway leading to impaired oocyte developmental competence in PCOS.  相似文献   

8.
9.
CYP17 (17alpha-hydroxylase-17,20-lyase; also P450c17 or P450(17alpha)) catalyses the17alpha-hydroxylation of progestogens and the subsequent acyl-carbon cleavage of the 17alpha-hydroxylated products (lyase activity) in the biosynthesis of androgens. The enzyme also catalyses another type of acyl-carbon cleavage (direct cleavage activity) in which the 17alpha-hydroxylation reaction is by-passed. Human CYP17 is heavily dependent on the presence of the membrane form of cytochrome b(5) for both its lyase and direct cleavage activities. In the present study it was found that substitution of human CYP17 amino acids, Arg(347), Arg(358) and Arg(449), with non-cationic residues, yielded variants that were impaired in the two acyl-carbon bond cleavage activities, quantitatively to the same extent and these were reduced to between 3 and 4% of the wild-type protein. When the arginines were replaced by lysines, the sensitivity to cytochrome b(5) was restored and the acyl-carbon cleavage activities were recovered. All of the human mutant CYP17 proteins displayed wild-type hydroxylase activity, in the absence of cytochrome b(5). The results suggest that the bifurcated cationic charges at Arg(347), Arg(358) and Arg(449) make important contributions to the formation of catalytically competent CYP17.cytochrome b(5) complex. The results support our original proposal that the main role of cytochrome b(5) is to promote protein conformational changes which allow the iron-peroxo anion to form a tetrahedral adduct that fragments to produce the acyl-carbon cleavage products.  相似文献   

10.
《Cellular signalling》2002,14(3):231-238
In adipocytes, protein kinase B (PKB) has been suggested to be the enzyme that phosphorylates phosphodiesterase 3B (PDE3B), a key enzyme in insulin's antilipolytic signalling pathway. In order to screen for PKB phosphatases, adipocyte homogenates were fractionated using ion-exchange chromatography and analysed for PKB phosphatase activities. PKB phosphatase activity eluted as one main peak, which coeluted with serine/threonine phosphatases (PP)2A. In addition, adipocytes were incubated with inhibitors of PP. Incubation of adipocytes with 1 μM okadaic acid inhibited PP2A by 75% and PP1 activity by only 17%, while 1 μM tautomycin inhibited PP1 activity by 54% and PP2A by only 7%. Okadaic acid, but not tautomycin, induced the activation of both PKBα and PKBβ. Finally, PP2A subunits were found in several subcellular compartments, including plasma membranes (PM) where the phosphorylation of PKB is thought to occur. In summary, our results suggest that PP2A is the principal phosphatase that dephosphorylates PKB in adipocytes.  相似文献   

11.
The 17 alpha-hydroxylase and 17,20-lyase activities of P450c17 lead to the production of 17 alpha-hydroxypregnenolone (17 alpha-OH-Preg) and dehydroepiandrosterone (DHEA), respectively, in different tissues. The mechanisms of differential regulation of these two activities are not yet fully elucidated. It has been previously shown that cytochrome b5 (cyt-b5) could facilitate the 17,20-lyase activity of human P450c17. Recently, a cDNA (type 2 cyt-b5) sharing 45.8% homology with type 1 cyt-b5 has been isolated from human testis. Since high 17,20-lyase activity is required for the production of androgens in the testis, we wanted to determine the importance of this second cDNA in the modulation of P450c17 17,20-lyase activity and hence, its role in the formation of active androgens. We therefore isolated type 2 cyt-b5 from human testis by RT-PCR and analyzed, by transient transfection in transformed human embryonic kidney cells (HEK-293) of various amounts of vectors expressing cyt-b5, P450-reductase and P450c17, its ability to modulate the 17,20-lyase activity of human P450c17. Results show that, in the presence of NADPH cytochrome P450 reductase (P450-red), type 2 cyt-b5 increases 17,20-lyase activity to a level comparable to that of type 1. These results support the idea that types 1 and 2 cyt-b5 could be involved in the differential modulation of 17 alpha-hydroxylase and 17,20-lyase activities of P450c17. Furthermore, the analysis of mRNA expression of types 1 and 2 cyt-b5 by RT-PCR using primers specific to each type showed that both types are present in the liver but also in the adrenal and testis.  相似文献   

12.
Yokoyama N  Miller WT 《FEBS letters》2001,505(3):460-464
In this study, we report that Src kinase is inhibited by protein phosphatase 2A (PP2A), a serine/threonine phosphatase. We carried out experiments in vitro using purified PP2A (AC dimer) and full-length v-Src or truncated forms of v-Src. The inhibition of v-Src by PP2A is concentration- and time-dependent. Addition of okadaic acid, a PP2A phosphatase inhibitor, abolished the PP2A-dependent inhibition of v-Src. When experiments were carried out at 4 degrees C under conditions where PP2A activity is inhibited, Src activity was unaffected by the presence of PP2A, suggesting that PP2A binding alone is insufficient to block Src activity. These results imply that PP2A activity is essential for inhibition of v-Src. We also demonstrate that PP2A binds to the catalytic and the regulatory domains of v-Src.  相似文献   

13.
The microsomal 17alpha-hydroxylase/17,20-lyase cytochrome P450 (P450c17) catalyzes the 17alpha-hydroxylase reaction required to produce cortisol, the major glucocorticoid in many species and the 17,20-lyase activity required for the production of androgens in all species. Utilizing the technique of random chimeragenesis we have attempted to map regions of primary sequence that contribute to the species-specific biochemical differences between rat and human P450c17. We have previously reported significant differences between rat and human P450c17 in their activities, stability and substrate-dependent coupling efficiencies even though they share 68% amino acid identity. Identification of the regions of primary sequence that contribute to each of these properties would be helpful in understanding the structure/function relationships in this enzyme. A single plasmid containing the cDNAs encoding both enzymes in a tandem orientation was constructed. This plasmid was linearized at unique restriction sites and used to transform Escherichia coli. A three-step screening protocol identified five chimeras with a uniform distribution of 5' rat and 3' human sequence. All chimeric proteins yield the characteristic reduced-CO difference spectra, indicating proper folding. The chimeras exhibit a range of stability and activities that are not consistent with the degree of parental primary sequence. A chimera containing 301 N-terminal rat P450c17 amino acids and lacking the rat P450c17 phenylalanine 343, had the highest lyase activity. Generation of these functional rat/human chimeras suggests that the tertiary structures of rat and human P450c17 are sufficiently conserved to allow proper folding of chimeric enzymes. However, the properties of these chimeras did not permit identification of a region of primary sequence that contributes to a species-specific property of rat and human P450c17. Stability of these chimeras and insight into the presence of secondary structural elements is discussed.  相似文献   

14.
Human cytochrome P450 17alpha-hydroxylase (CYP17) catalyses not only the 17alpha-hydroxlation of pregnenolone and progesterone and the C17,20-side chain cleavage (lyase) of 17alpha-hydroxypregnenolone, necessary for the biosynthesis of C21-glucocorticoids and C19-androgens, but also catalyses the 16alpha-hydroxylation of progesterone. In efforts to understand the complex enzymology of CYP17, structure/function relationships have been reported previously after expressing recombinant DNAs, encoding CYP17 from various species, in nonsteroidogenic mammalian or yeast cells. A major difference between species resides in the lyase activity towards the hydroxylated intermediates and in the fact that the secretion of C19-steroids take place, in some species, principally in the gonads. Because human and higher primate adrenals secrete steroids, CYP17 has been characterized in the Cape baboon, a species more closely related to humans, in an effort to gain a further understanding of the reactions catalysed by CYP17. Baboon and human CYP17 cDNA share 96% homology. Baboon CYP17 has apparent Km and V values for pregnenolone and progesterone of 0.9 micro m and 0.4 nmol.h-1.mg protein-1 and 6.5 micro m and 3.9 nmol.h-1.mg protein-1, respectively. Baboon CYP17 had a significantly higher activity for progesterone hydroxylation relative to pregnenolone. No 16alpha-hydroxylase and no lyase activity for 17alpha-hydroxyprogesterone. Sequence analyses showed that there are 28 different amino acid residues between human and baboon CYP17, primarily in helices F and G and the F-G loop.  相似文献   

15.
P450c17 (17alpha-hydroxylase/17,20-lyase) catalyzes steroid 17alpha-hydroxylase and 17,20-lyase activities in the biosynthesis of androgens and estrogens. These two activities are differentially regulated in a tissue-specific and developmentally programmed manner. To visualize the active site topology of human P450c17 and to study the structural basis of its substrate specificity and catalytic selectivity, we constructed a second-generation computer-graphic model of human P450c17. The energetics of the model are comparable to those of the principal template of the model, P450BMP, as determined from its crystallographic coordinates. The protein structure analysis programs PROCHECK, WHATIF, and SurVol indicate that the predicted P450c17 structure is reasonable. The hydrophobic active site accommodates both delta4 and delta5 steroid substrates in a catalytically favorable orientation. The predicted contributions of positively charged residues to the redox-partner binding site were confirmed by site-directed mutagenesis. Molecular dynamic simulations with pregnenolone, 17-OH-pregnenolone, progesterone, and 17-OH-progesterone docked into the substrate-binding pocket demonstrated that regioselectivity of the hydroxylation reactions is determined both by proximity of hydrogens to the iron-oxo complex and by the stability of the carbon radicals generated after hydrogen abstraction. The model explains the activities of all known naturally occurring and synthetic human P450c17 mutants. The model predicted that mutation of lysine 89 would disrupt 17,20-lyase activity to a greater extent than 17alpha-hydroxylase activity; expression of a test mutant, K89N, in yeast confirmed this prediction. Hydrogen peroxide did not support catalysis of the 17,20-lyase reaction, as would be predicted by mechanisms involving a ferryl peroxide. Our present model and biochemical data suggest that both the hydroxylase and lyase activities proceed from a common steroid-binding geometry by an iron oxene mechanism. This model will facilitate studies of sex steroid synthesis and its disorders and the design of specific inhibitors useful in chemotherapy of sex steroid-dependent cancers.  相似文献   

16.
Androgens are an integral part of human physiology. The de novo production of androgens is generally limited to the adrenal cortex and the gonads. Androgen synthesis by these steroidogenic tissues requires the bifunctional enzyme cytochrome P450c17, which catalyzes both 17 hydroxylase and 17,20 lyase activities. 17,20-lyase activity is relevant to the regulation of androgen production, and is allosterically modulated through the action of an accessory protein, cytochrome b5 (CytB5). Our objective was to determine the cellular localization of P450c17 and CytB5 in androgen-synthesizing tissues of the human. Immunohistochemical analyses of P450c17 and CytB5 were performed on fetal and adult human adrenals, ovaries, and testes. In the fetal adrenal, CytB5 and P450c17 were both found in the cells of the fetal zone, but not in the neocortex. In the adult adrenal, the zona fasciculata was immunoreactive for P450c17 only, whereas the zona reticularis was immunopositive for both P450c17 and CytB5. In the adult gonads, P450c17 and CytB5 were colocalized in the Leydig cells of the testis, theca interna cells of the follicle, theca lutein cells, and isolated cell clusters in the ovarian stroma. Whereas P450c17 and CytB5 were colocalized in the Leydig cells of the fetal testes, there was no immunostaining for either in the midgestational fetal ovary. Our findings of colocalization of CytB5 and P450c17 are strongly supportive of the view that CytB5 plays an important role in the regulation of the androgen biosynthetic pathway in the fetal and adult human.  相似文献   

17.
The effects of a variety of certain inhibitors of adrenal steroidogenesis have been studied on the reconstituted C21-steroid 17 alpha-hydroxylase-17,20-lyase system, whose protein components, the enzyme 17 alpha-hydroxylase-17,20-lyase(P-450sccII) and its reductase, are extensively purified from pig testis microsomes. We found: (1) Ketoconazole (cis-1-acetyl-4-[4-((2-(2,4-dichlorophenyl)-2-(1H-imidazole-1- ylmethyl-1,3-dioxalan-4-ol)methoxy)phenyl] piperazine and Etomidate(R-(+)-ethyl-[1-(a-methyl-benzyl)-indol-5-carboxylatel), inhibited cleavage of 17 alpha-hydroxy progesterone at the 17,20-bond to give androstenedione in a dose-dependent fashion. (2) Some other inhibitors of steroidogenesis, Metyrapone (2-methyl-1.2di-3-pyridyl-1-propanone), Trilostane (4,5-epoxy-17-hydroxy-3-oxo androstane-2-carbonitrile),o,p'DDD (1-(O-chlorophenyl)-1-(p-chlorophenyl)2,2-dichloroethane) and Aminoglutethimide (p-(alpha-aminopheny)-alpha-ethylglutaramide) did not inhibit the same 17,20-lyase system. (3) All of the above listed inhibitors, over a wide variety of concentration ranges, had no significant effect on the 17 alpha-hydroxylation of 11 beta-hydroxyprogesterone, which had been shown to be catalyzed by the same P-450sccII. (4) NADPH:P-450 reductase was not inhibited by all of the above listed inhibitors.  相似文献   

18.
Four metabolites of okadaic acid were generated by incubation with human recombinant cytochrome P450 3A4. The structures of two of the four metabolites have been determined by MS/MS experiments and 1D and 2D NMR methods using 94 and 133 μg of each metabolite. The structure of a third metabolite was determined by oxidation to a metabolite of known structure. Like okadaic acid, the metabolites are inhibitors of protein phosphatase PP2A. Although one of the metabolites does have an α,β unsaturated carbonyl with the potential to form adducts with an active site cysteine, all of the metabolites are reversible inhibitors of PP2A.  相似文献   

19.
We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a range of (4-substituted phenyl)sulfonate derivatives of 4-hydroxybenzyl imidazole against the two components of 17α-hydroxylase/17,20-lyase (P45017α), namely, 17α-hydroxylase (17α-OHase) and 17,20-lyase (lyase). The results show the compounds to be highly potent inhibitors with limited selectivity towards the lyase component [e.g., toluene-4-sulfonic acid 4-imidazol-1-ylmethyl-phenyl ester (4) possessed an IC50 value of 40 nM against 17α-OHase and 30 nM against lyase].  相似文献   

20.
The in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on steroid metabolism in human luteinized granulosa cells (hLGC) have been summarized as a decreased estradiol (E(2)) production without altering either E(2) metabolism or cytochrome P450 aromatase activity. In the present study, hLGC were used to analyze the fate of different substrates for cytochrome P450 17alpha-hydroxylase/17,20-lyase (P450(c17)) in the presence or absence of TCDD. Human LGCs were plated directly on plastic culture dishes in medium supplemented with 2 IU/ml of hCG. TCDD (10 nM) or its solvent was added directly to the cells at the time of medium change, every 48 h for 8 days. The objective of the experiment was to test the hypothesis that exogenous steroid, substrate for P450(c17), would reduce the TCDD effects on E(2) synthesis. With dehydroepiandrosterone (DHEA) (a P450(c17) product), a dose-related increase in E(2) production was observed and the effect of TCDD on lowering E(2) production disappeared. In contrast, with increasing doses, up to 10 micro M, of pregnenolone (P(5)), no change in E(2) production was observed. However, 17alpha-hydroxypregnenolone (17P(5)) at 10 micro M produced a modest but significant increase in the E(2) production. Treatments with P(5) and 17P(5) did not alter the effect of TCDD on E(2) production. Radiolabeled substrate utilization by hLGC suggests that the principal metabolic pathway for Delta5 substrates is the conversion to a Delta4 product probably by a very active 3beta-hydroxysteroid dehydrogenase. We conclude that estrogen production by hLGC is limited at the level of lyase activity. Thus, these data suggest that the most likely target for the TCDD-induced inhibition of estrogen synthesis by hLGC is the 17,20-lyase activity of the P450(c17) enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号