首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Mitosis in the plasmodium ofEchinostelium minutum is intranuclear (closed spindle) and centrioles are not present at the spindle poles. The nuclear envelope remains essentially intact throughout mitosis with polar fenestrae appearing in anaphase and persisting through telophase. During anaphase there is a shortening in the distance of the chromosomes to the poles followed by a further separation of the poles. Zippering of microtubules may be the basis for these two anaphasic movements. During telophase the polar MTOCs are extruded into the cytoplasm through the polar fenestrae prior to reconstitution of the nuclear envelope. It is proposed that during sporulation such MTOCs are responsible for the differentiation of the centrioles which subsequently persist in the myxamoebal phase of this species.Based on the doctoral dissertation of the first author presented to the Department of Botany, University of Washington, Seattle, WA 98195, U.S.A.  相似文献   

2.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

3.
Cell division is described in the octaflagellate prasinophyte Pyramimonas amylifera Conrad and is compared in related genera. Basal bodies replicate at preprophase and move toward the poles. Cells remain motile throughout division. The nuclear envelope disperses and chromosomes begin to condense at prophase. Pairs of multilayered kinetochores are evident on the chromosomes of the metaphase plate. Spindle microtubules extending from the region of the basal bodies and rhizoplasts attach to the kinetochores or extend from pole to pole. Numerous vesicles and ribosomes have entered the nuclear region and the incipient cleavage furrow invaginates. The chromosomes move toward the poles at anaphase leaving a broad interzonal spindle between the two chromosomal plates. The nuclear envelope reforms first around the chromatin on the side adjacent to the spindle poles and later on the interzonal side. The cleavage furrow progresses into the interzonal spindle at telophase. By late telophase the nucleoli have reformed and the chromosomes have decondensed. The interzonal spindle has not been observed late in telophase. As the cleavage furrow nears completion the cells begin to twist and contort, ultimately separating the two cells.  相似文献   

4.
The spindle apparatus ofCoprinus micaceus begins to develop from the diglobular polar body outside the nucleus. During both meiotic divisions it operates inside the nuclear envelope and consists of two amorphous poles, a central bundle of interpolar microtubules, and chromosomal microtubules. A metaphase plate cannot exist because the interpolar strand of fibers is persistent throughout the division process. Within the spindle axis more than 100 microtubules can be estimated. They are encircled by a ring of chromatic structures. During the telophase the former spindle pole is evaginated from the nuclear envelope and contacts the plasmalemma near the cell wall.  相似文献   

5.
Mitosis is described in the flagellate Oxyrrhis marina Dujardin and is compared in related genera. Dense plaques develop in the nuclear envelope at prophase and give rise to an intranuclear spindle. Some of the microtubules associate with the chromosomes while others extend across the nucleus. The basal bodies migrate toward the poles early in division and retain a position lateral to the nuclear poles throughout mitosis. Microtubules are not present between the nucleus and the basal bodies. The nucleolus is persistent and elongates throughout anaphase and telophase. Chromosomal separation is accomplished by sliding of non-chromosomal microtubules and by elongation of the nuclear envelope rather than by shortening of the spindle microtubules. The nuclear envelope begins to constrict in the center early in anaphase. Continued constriction of the envelope and elongation of the nucleus leads to the formation of a dumbbell-shaped nucleus by late telophase. Mitosis culminates by the constriction of the nucleus into two daughter nuclei. The taxonomic position of Oxyrrhis marina is discussed in light of these findings.  相似文献   

6.
Taxol, a microtubule stabilizing agent, has been used to study changes in spindle microtubule organization during mitosis. PtK1 cells have been treated with 5 μg/ml taxol for brief periods to determine its effect on spindle architecture. During prophase taxol induces microtubules to aggregate, particularly evident in the region between the nucleus and cell periphery. Taxol induces astral microtubule formation in prometaphase and metaphase cells concomitant with a reduction in spindle length. At anaphase taxol induces an increase in length in astral microtubules and reduces microtubule length in the interzone. Taxol-treated telophase cells show a reduction in the rate of furrowing and astral microtubules lack a discrete focus and are arranged more diffusely on the surface of the nuclear envelope. In summary, taxol treatment of cells prior to anaphase produces an increase in astral microtubules, a reduction in kinetochore microtubules and a decrease in spindle length. Brief taxol treatments during anaphase through early G1 promotes stabilization of microtubules, an increase in the length of astral microtubules and a delayed rate of cytokinesis.  相似文献   

7.
T. Hori  J. C. Green 《Protoplasma》1985,125(1-2):140-151
Summary Mitosis and cytokinesis have been studied in the flagellate algaIsochrysis galbana Parke (Prymnesiophyceae). Nuclear division is preceded by replication of the flagella and haptonema, the Golgi body and the chloroplast; fission in the chloroplast occurs in the region of the pyrenoid. During prophase, spindle microtubules radiating from two ill-defined poles are formed. The nuclear envelope breaks down and the chromatin condenses. At metaphase the spindle is fully developed, some pole-to-pole microtubules passing through the well-defined chromatin plate, others terminating at it. No kinetochores or individual chromosomes were observed. By late metaphase, many Golgi-derived vesicles may be seen against the two poleward faces of the metaphase plate. During anaphase, the two daughter masses of chromatin move towards the poles. In early telophase, the nuclear envelope of each daughter nucleus is complete only on the side towards the adjacent chloroplast, remaining open on the interzonal side. However, during telophase each nucleus becomes reorientated so that it lies lateral to the long axis of the spindle and with its open side towards the chloroplasts. By late telophase, each new nuclear envelope is complete and confluence with the adjacent chloroplast ER established.Cytokinesis and subsequent segregation of the daughter cells are effected by the dilation of Golgi- and ER-derived vesicles in the interzonal region. No microtubular structures are involved. Comparisons with the results from other studies of mitosis in members of thePrymnesiophyceae show that they all have a number of features in common, but that there are differences in detail between species.  相似文献   

8.
Mitosis in Boergesenia forbesii (Harvey) Feldman was studied by immunofluorescence microscopy using anti-β–tubulin, anti-γ–tubulin, and anti-centrin antibodies. In the interphase nucleus, one, two, or rarely three anti-centrin staining spots were located around the nucleus, indicating the existence of centrioles. Microtubules (MTs) elongated randomly from the circumference of the nuclear envelope, but distinct microtubule organizing centers could not be observed. In prophase, MTs located around the interphase nuclei became fragmented and eventually disappeared. Instead, numerous MTs elongated along the nuclear envelope from the discrete anti-centrin staining spots. Anti-centrin staining spots duplicated and migrated to the two mitotic poles. γ–Tubulin was not detected at the centrioles during interphase but began to localize there from prophase onward. The mitotic spindle in B. forbesii was a typical closed type, the nuclear envelope remaining intact during nuclear division. From late prophase, accompanying the chromosome condensation, spindle MTs could be observed within the nuclear envelope. A bipolar mitotic spindle was formed at metaphase, when the most intense staining of γ-tubulin around the centrioles could also be seen. Both spindle MT poles were formed inside the nuclear envelope, independent of the position of the centrioles outside. In early anaphase, MTs between separating daughter chromosomes were not detected. Afterward, characteristic interzonal spindle MTs developed and separated both sets of the daughter chromosomes. From late anaphase to telophase, γ-tubulin could not be detected around the centrioles and MT radiation from the centrioles became diminished at both poles. γ-Tubulin was not detected at the ends of the interzonal spindle fibers. When MTs were depolymerized with amiprophos methyl during mitosis, γ-tubulin localization around the centrioles was clearly confirmed. Moreover, an influx of tubulin molecules into the nucleus for the mitotic spindle occurred at chromosome condensation in mitosis.  相似文献   

9.
Mitosis and cell division have been examined ultrastructurally in the vegetative cells of Hydrurus foetidus (Vill) Trev. and found to resemble that of Ochromonas in two important aspects. First, the rhizoplast acts as the spindle organizing body and second, the spindle elongates considerably during anaphase. It differs from Ochromonas in that there is no movement of the basal bodies and flagella towards the poles. Moreover, the nuclear envelope remains relatively intact throughout early stages of mitosis, with gaps developing at the poles during prophase to permit entry of spindle microtubules. Disruption of the nuclear envelope does not occur in the equatorial plane until late anaphase. The spindle persists into telophase and is bent towards the posterior of the cell by the ingrowing edge of the cleavage furrow. Persistence of the spindle and lack of Ochromoms-type cell elongation may be related to the constricting presence of the sheath during cell division—a completely different strategy to that adopted by the green algae under conditions of similar constraint.  相似文献   

10.
Frans A. C. Kouwets 《Protoplasma》1996,191(3-4):191-204
Summary The ultrastructure of mitosis and cytokinesis is studied in the typical and a multicentriolar form of the multinucleate green algaBracteacoccus minor (Chodat) Petrovà. These processes are essentially identical in both forms, and are similar to those in other uni- and multinucleate chlorellalean algae. The mitotic spindle is closed and centric, and a fragmentary perinuclear envelope is present. In multinuclear cells mitosis is synchronous and may occur at the same time as cytokinesis. Cleavage is simultaneous and centrifugal, starting near the nucleus-associated centrioles and apparently mediated by phycoplast microtubules of the trochoplast type. Flagellated wall-less spores are usually formed. In the typical form ofB. minor, each interphase nucleus is associated with two mature centrioles (= one set) which function as centrosomal markers. At the onset of mitosis these centrioles duplicate and segregate and eventually establish the two poles of the spindle, where polar fenestrae develop in the nuclear envelope. In the multicentriolar form, however, each interphase nucleus generally is associated with two or three sets of centrioles. Consequently, during mitosis each half-spindle is associated with two or three sets. These centrioles are not necessarily all associated with the fenestrae at the spindle poles, but one or more sets are frequently associated with the nuclear membrane, more or less remote from the nuclear poles. However, the spindle in this multicentriolar form remains essentially bipolar. Cleavage generally results in zoospores with two, four or six flagella. The behaviour of the extra centrioles during the cell cycle and their possible relationship with centrosomes are discussed.  相似文献   

11.
The mitosis and cytokinesis of Draparnaldia glomerata as examined here by transmission electron microscopy are in many aspects similar to those described earlier for other chaetophoralean algae. The standard chaetophoralean model of the mechanism of mitosis/cytokinesis is described in detail. Characteristic in this pattern is the movement of sets of centrioles towards the nuclear poles followed by a proliferation of extranuclear microtubules at prophase, the (partial) fusion of centrioles with the spindle poles at metaphase and anaphase, the simultaneous separation of chromosomes apparently caused by both spindle elongation and shortening of the chromosomal microtubules at anaphase, the expulsion of the centrioles by daughter nuclei and finally the non–persistent spindle at telophase. Cytokinesis takes place by formation of a cell plate associated with phycoplast microtubules. The possible function of the phycoplast in cytokinesis in Draparnaldia is discussed.  相似文献   

12.
A detailed ultrastructure study was made of cell division and colony development in Eudorina elegans Ehrenberg. At the onset of cell division and prior to nuclear division the nucleus moved from the cell center to the cell surface. During nuclear division the nuclear membrane remained intact, except for openings occurring at the nuclear poles. The spindle microtubules appeared to arise from a MTOC-like (microtubule organizing centers) structure, while centrioles were absent from the nuclear poles. Following telophase, daughter nuclei formed which were separated by several distinct bands of endoplasmic reticulum. Cytokinesis occurred with formation of a cleavage furrow, associated with a typical phycoplast band of microtubules. However, cytokinesis was incomplete, resulting in formation of cytoplasmic bridges between the plakeal cells. Upon completion of up to five successive cell divisions, the plakea underwent inversion, which appeared to involve the production of colonial envelope material and rearrangement of cytoplasmic bridges. A new hypothesis concerning inversion is postulated based on these observations.  相似文献   

13.
Asteromonas gracilis Artari remains motile throughout cell division. Basal bodies separate and replicate at prophase. They are located lateral to the poles of the closed metaphase spindle. Kinetochores appear at late metaphase. Chromosomes move to the poles and extensions of the nuclear envelope develop into the pyrenoid at anaphase. The interzonal spindle disintegrates at telophase and a diffuse phycoplast is present. Cytokinesis proceeds rapidly from the anterior region of the cell. Newly formed daughter cells have four narrow-banded rootlets and both distal and proximal fibers connect the basal bodies. Features of cell division in Asteromonas are compared to those in other algae, particularly Dunaliella and Chlamydomonas.  相似文献   

14.
Rat kangaroo (PtK2) cells were fixed and embedded in situ. Cells in mitosis were studied with the light microscope and thin sections examined with the electron microscope. Pericentriolar, osmiophilic material, rather than the centrioles, is probably involved in the formation of astral microtubules during prophase. Centriole migration occurs during prophase and early prometaphase. The nuclear envelope ruptures first in the vicinity of the asters. Nuclear pore complexes disintegrate as envelope fragments are dispersed to the periphery of the mitotic spindle. Microtubules invade the nucleus through gaps of the fragmented envelope. The number of microtubules and the degree of spindle organization increase during prometaphase and are maximal at metaphase. At this stage, chromosomes are aligned on the spindle equator, sister kinetochores facing opposite poles. Cytoplasmic organelles are excluded from the spindle. Prominent bundles of kinetochore microtubules converge towards the poles. Spindles in cold-treated cells consist almost exclusively of kinetochore tubules. Separating daughter chromosomes in early anaphase are connected by chromatin strands, possibly reflecting the rupturing of fibrous connections occasionally observed between sister chromatids in prometaphase. Breakdown of the spindle progresses from late anaphase to telophase, except for the stem bodies. Chromosomes decondense to form two masses. Nuclear envelope reconstruction, probably involving endoplasmic reticulum, begins on the lateral faces. Nuclear pores reappear on membrane segments in contact with chromatin. Microtubules are absent from reconstructed daughter nuclei.This report is to a large part based on a dissertation submitted by the author to the Graduate Council of the University of Florida in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

15.
At prophase in Pleurastrum, extranuclear spindle microtubules develop from the region of centrioles, which lie lateral to the nucleus midway between the future sites of the metaphase spindle poles. The microtubules then move laterally to overarch the nucleus and finally become incorporated into the spindle. The centrioles do not migrate and therefore lie in the same plane as the chromosomes at metaphase. At telophase, 2, more different systems of microtubules develop from the vicinity of the centrioles—a phycoplast and extensive arrays of microtubules that ensheath the daughter nuclei. Cell division in the filamentous Pleurastrum is compared to that in the green flagellate, Platymonas. The similarities between cell division in the 2 algae are interpreted as evidence: (i) that rhizoplasts (which in Platymonas resemble myofibrils) are somehow homologous to microtubules; and, (ii) that cell division in Pleurastrum differs from cell division in other examined filamentous chlorophycean genera because Pleurastrum has an independent evolutionary origin from a monad with Platymonas-like characteristics.  相似文献   

16.
In the present work, we followed the several phases of Tritrichomonas foetus and Trichomonas vaginalis cell cycles using immunofluorescence, serial thin sections, three-dimensional (3D) reconstruction, and transmission electron microscopy. In motile trichomonad cells or in pseudocyst forms, the nuclear envelope persists throughout mitosis, and the spindle is extranuclear. We found three types of spindle microtubules: pole-to-nucleus microtubules which are attached to the nuclear envelope, pole-to-pole microtubules forming a cylindrical, cytoplasmic groove on the nuclear compartment in pseudocysts of T. foetus cells, and pole-to-cytosol microtubules which extend freely into the cytoplasm. We demonstrated that: (1) in T. foetus, the spindle is assembled from an MTOC located at the base of the costa, underneath one of the basal bodies; (2) the spindle presents an unusual arc shape during the initial phases of mitosis in motile trophozoites; (3) the spindle microtubules are glutamylated, but not acetylated; (4) several membranes similar to those of the endoplasmic reticulum follow the spindle microtubules; (5) finger-like projections extend from the nucleus towards the cell poles in pseudocysts and multinucleated cells; and (6) vesicles formed in between the two nuclear membranes are seen in the course of mitosis in both trophozoite and pseudocyst forms.  相似文献   

17.
ABSTRACT. Mitosis and cytokinesis in Katablepharis ovalis , a colorless flagellate, was investigated. Two new flagella are produced prior to prophase, resulting in a motile quadriflagellate cell during mitosis. the inner array of microtubules of the feeding apparatus disappears before prophase begins. the nuclear envelope disperses during prophase, apparently being converted into rough endoplasmic reticulum. the chromatin condenses and the nucleolus disperses with spindle microtubules appearing oriented perpendicular to the longitudinal axis of the cell. At metaphase, the chromatin is condensed as a single disc-shaped mass and rough endoplasmic reticulum flanks the chromatin mass on each side. Groups of spindle microtubules pass through tunnels in the rough endoplasmic reticulum and through electron-translucent areas of the chromatin. the spindle microtubules end at a number of minipoles in the cytoplasm. Vesicles, ribosomes, mitochondria and endoplasmic reticulum migrate among the spindle microtubules. There is no polar body or any electrondense area associated with the spindle poles. the basal bodies of the flagella remain attached to the axonemes and do not participate in mitosis. In anaphase, the chromatin separates and migrates to the poles. During telophase, the nuclear envelope reforms from the rough endoplasmic reticulum and the nucleoli reappear. the spindle microtubules are persistent during telophase. Cytokinesis occurs by longitudinal fission, starting at the anterior end and progressing posteriorly. Cytokinesis may be driven by elongation of the spindle microtubules since there is no visible structure associated with the furrowing.  相似文献   

18.
K. Wells 《Protoplasma》1978,94(1-2):83-108
Summary The two division of meiosis that occur in the distal portion of the basidia ofPholiota terrestris were studied with light and electron microscopy. A diglobular spindle pole body (SPB), consisting of two globular elements and a connecting, electron-dense middle piece, is closely attached to the nuclear envelope of the fusion nucleus. During prometaphase I the globular elements separate and pass to the opposite poles as the chiastic spindle is formed. Evidently, the middle piece also separates with each resulting half persisting as an eccentric, electron-dense portion of the monoglobular SPB of meta-, ana-, and telophase nuclei. Also during prometaphase I, the nuclear envelope becomes discontinuous, especially in the lower region of the spindle. Light microscopic evidence of nucleolar extrusion at prometaphase I and II was observed. At metaphase I the SPB's move away from the condensed chromatic mass as the chromatids move asynchronously along the expanding spindle, evidently, due both to the elongation of the continuous fibers and the shortening of the chromosomal fibers. Two images resembling typical kinetochroes are illustrated in anaphase I nuclei, and others were seen during the study. At early telophase I and II the nuclear envelope is present laterally, is then formed in the interpolar region, and eventually appears between the chromatin and monoglobular SPB. A perforated ER cap, which is penetrated by microtubules, delimits the SPB. The nucleus enlarges, the chromatin becomes diffused except adjacent to the SPB, and the perinuclear ER becomes uniformly oriented around the nuclear envelope. At interphase I a diglobular SPB was not clearly documented. During interphase I the ER cap disappears but the perinuclear ER persists. Division II, with the exception of prophase, is essentially identical to division I. The postmeiotic, haploid nuclei migrate to the median or proximal region of the basidium. The diglobular SPB reappears. The meiotic apparatus inP. terrestris is considered to have the same fundamental features as those of plants and animals and in detail conforms to the pattern described in several light and electron microscopic studies of other Homobasidiomycetes.  相似文献   

19.
Polarity of spindle microtubules in Haemanthus endosperm   总被引:12,自引:7,他引:5       下载免费PDF全文
Structural polarities of mitotic spindle microtubules in the plant Haemanthus katherinae have been studied by lysing endosperm cells in solutions of neurotubulin under conditions that will decorate cellular microtubules with curved sheets of tubulin protofilaments. Microtubule polarity was observed at several positions in each cell by cutting serial thin sections perpendicular to the spindle axis. The majority of the microtubules present in a metaphase or anaphase half-spindle are oriented with their fast-growing or "plus" ends distal to the polar area. Near the polar ends of the spindle and up to about halfway between the kinetichores and the poles, the number of microtubules with opposite polarity is low: 8-20% in metaphase and 2-15% in anaphase cells. Direct examination of 10 kinetochore fibers shows that the majority of these microtubules, too, are oriented with their plus ends distal to the poles, as had been previously shown in animal cells. Sections from the region near the spindle equator reveal an increased fraction of microtubules with opposite polarity. Graphs of polarity vs. position along the spindle axis display a smooth transition from microtubules of one orientation near the first pole, through a region containing equal numbers of the two orientations, to a zone near the second pole where the opposite polarity predominates. We conclude that the spindle of endosperm cells is constructed from two sets of microtubules with opposite polarity that interdigitate near the spindle equator. The length of the zone of interdigitation shortens from metaphase through telophase, consistent with a model that states that during anaphase spindle elongation in Haemanthus, the interdigitating sets of microtubules are moved apart. We found no major changes in the distribution of microtubule polarity in the spindle interzone from anaphase to telophase when cells are engaged in phragmoplast formation. Therefore, the initiation and organization of new microtubules, thought to take place during phragmoplast assembly, must occur without significant alteration of the microtubule polarity distribution.  相似文献   

20.
Summary Cultured soybean cells recovered from a marked decrease in cell division 20 hours after removal of their cell walls with enzymes and exhibited sustained mitotic activity. Mitosis was essentially similar in both cultured cells and protoplasts. At prophase microtubules aggregated in a clear zone surrounding the nucleus prior to forming the spindle. During metaphase and anaphase chromosomal microtubules were attached to diffuse kinetochores and extended to broad spindle poles; few interzonal microtubules were evident. Considerable endoplasmic reticulum was present at the spindle poles throughout division and may contribute to the new nuclear envelope at telophase. A typical phragmoplast consisting of vesicles, overlapping microtubules and associated electron-dense material appeared earlier in the protoplasts and developed into a thicker cell plate than found in the cultured cells.Supported by the National Research Council of Canada, Grant A6304.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号