首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uncoupling protein-2 (UCP2) is a member of the inner mitochondrial membrane anion-carrier superfamily. Although mRNA for UCP2 is widely expressed, protein expression is detected in only a few cell types, including macrophages. UCP2 functions by an incompletely defined mechanism, to reduce reactive oxygen species production during mitochondrial electron transport. We observed that the abundance of UCP2 in macrophages increased rapidly in response to treatments (rotenone, antimycin A and diethyldithiocarbamate) that increased mitochondrial superoxide production, but not in response to superoxide produced outside the mitochondria or in response to H2O2. Increased UCP2 protein was not accompanied by increases in ucp2 gene expression or mRNA abundance, but was due to enhanced translational efficiency and possibly stabilization of UCP2 protein in the inner mitochondrial membrane. This was not dependent on mitochondrial membrane potential. These findings extend our understanding of the homeostatic function of UCP2 in regulating mitochondrial reactive oxygen production by identifying a feedback loop that senses mitochondrial reactive oxygen production and increases inner mitochondrial membrane UCP2 abundance and activity. Reactive oxygen species-induction of UCP2 may facilitate survival of macrophages and retention of function in widely variable tissue environments.  相似文献   

2.
Tindaro M. Giardina 《BBA》2008,1777(2):118-129
Uncoupling protein-2 (UCP2) is a member of the inner mitochondrial membrane anion-carrier superfamily. Although mRNA for UCP2 is widely expressed, protein expression is detected in only a few cell types, including macrophages. UCP2 functions by an incompletely defined mechanism, to reduce reactive oxygen species production during mitochondrial electron transport. We observed that the abundance of UCP2 in macrophages increased rapidly in response to treatments (rotenone, antimycin A and diethyldithiocarbamate) that increased mitochondrial superoxide production, but not in response to superoxide produced outside the mitochondria or in response to H2O2. Increased UCP2 protein was not accompanied by increases in ucp2 gene expression or mRNA abundance, but was due to enhanced translational efficiency and possibly stabilization of UCP2 protein in the inner mitochondrial membrane. This was not dependent on mitochondrial membrane potential. These findings extend our understanding of the homeostatic function of UCP2 in regulating mitochondrial reactive oxygen production by identifying a feedback loop that senses mitochondrial reactive oxygen production and increases inner mitochondrial membrane UCP2 abundance and activity. Reactive oxygen species-induction of UCP2 may facilitate survival of macrophages and retention of function in widely variable tissue environments.  相似文献   

3.
The uncoupling protein (UCP) from mammalian brown adipose tissue is an integral component of the mitochondrial inner membrane where it dissipates the proton electrochemical gradient. UCP is transported into mitochondria from the cytosol but lacks a cleavable targeting peptide. We have expressed the rat UCP in Saccharomyces cerevisiae and shown that this protein, which is not normally found in yeast, is targeted to the mitochondria where it disrupts mitochondrial function, probably by uncoupling oxidative phosphorylation. The observed growth defect is dependent upon the level of expression of UCP. When the unmodified UCP cDNA is expressed in yeast under the control of the GAL10 promoter no defect in growth is observed. We have inserted the UCP coding sequence behind the strong phosphoglycerate kinase promoter under the control of the GAL1-10 upstream activation site and introduced a yeast consensus sequence (ATAATG) at the translation start site. We have found that UCP expressed in S. cerevisiae is targeted to mitochondria and that its expression induces a marked growth defect on non-fermentable carbon sources in a manner dependent on induction with galactose.  相似文献   

4.
A role for uncoupling protein (UCP) homologues in mediating the proton leak in mammalian mitochondria is controversial. We subjected insulinoma (INS-1) cells to adenoviral expression of UCP2 or UCP1 and assessed the proton leak as the kinetic relationship between oxygen use and the inner mitochondrial membrane potential. Cells were infected with different amounts of rat UCP2, and, in other experiments, with either UCP2 or UCP1. The relative molar expression of these subtypes was quantified through comparison with histidine-tagged UCP1 or UCP2 proteins engineered by expression in Escherichia coli. Adenoviral infection with UCP2, compared with beta-galactosidase, resulted in a dose-dependent shift in kinetics indicating increased H(+) flux at any given membrane potential. UCP1 also enhanced H(+) flux, but, on a relative molar basis, the overexpression of the endogenous protein, UCP2, was more potent than UCP1. These results were not due to nonspecific overexpression of mitochondrial protein since UCP1 activity was inhibited by GDP and because overexpression of another membrane carrier protein, the oxoglutarate malate carrier had no effect. UCP2-mediated H(+) conduction was not GDP sensitive. These data suggest that the UCP homologue, UCP2, mediates the proton leak in mitochondria of a mammalian cell wherein UCP2 is the native subtype.  相似文献   

5.
6.
The phenotypes observed in mice whose uncoupling protein (Ucp2) gene had been invalidated by homologous recombination (Ucp2(-/-) mice) are consistent with an increase in mitochondrial membrane potential in macrophages and pancreatic beta cells. This could support an uncoupling (proton transport) activity of UCP2 in the inner mitochondrial membrane in vivo. We used mitochondria from lung or spleen, the two organs expressing the highest level of UCP2, to compare the proton leak of the mitochondrial inner membrane of wild-type and Ucp2(-/-) mice. No difference was observed under basal conditions. Previous reports have concluded that retinoic acid and superoxide activate proton transport by UCP2. Spleen mitochondria showed a higher sensitivity to retinoic acid than liver mitochondria, but this was not caused by UCP2. In contrast with a previous report, superoxide failed to increase the proton leak rate in kidney mitochondria, where no UCP2 expression was detected, and also in spleen mitochondria, which does not support stimulation of UCP2 uncoupling activity by superoxide. Finally, no increase in the ATP/ADP ratio was observed in spleen or lung of Ucp2(-/-) mice. Therefore, no evidence could be gathered for the uncoupling activity of the UCP2 present in spleen or lung mitochondria. Although this may be explained by difficulties with isolated mitochondria, it may also indicate that UCP2 has another physiological significance in spleen and lung.  相似文献   

7.
8.
Through the use of the immunoelectron microscopical technique, uncoupling protein (UCP) was analyzed in the brown adipocytes of room temperature- and cold-acclimated rats, in rat brown adipocytes developed in vitro, and in the brown adipocytes of mice, hamsters, and hedgehogs. Using rat anti-UCP-antibody, it is shown that UCP is located in the cristae of brown adipocytes mitochondria (UC-mitochondria) of all analyzed species, whereas mitochondria of nonadipose cells, i.e., C-mitochondria of endothelium, fibrocytes, smooth muscle cells, Schwann cells, axons of neural cells, and white blood cells, do not contain UCP. Cold stress in rats exposed to temperatures of +4 and -20 degrees C caused the amount of UCP per 1 micron 2 of mitochondria to more than double compared with room temperature-acclimated rats. This increase was especially dramatic on the outer mitochondrial membrane: fourfold more UCP molecules compared to the control rats. The ground cytoplasm of adipocytes showed very intensive labeling with RNase-gold complex, indicating that cytoplasm was an active site for protein synthesis, while the absence of UCP-labeling in ground cytoplasm was interpreted to mean that ground cytoplasm did not serve as a site for UCP synthesis. On the other hand, the protrusions of the outer mitochondrial membrane covered with ribosomes, clusters of UCP molecules, and clusters of RNase-gold particles supported the idea that UCP was one of the mitochondrial proteins synthesized on the ribosomes which were in contact with the outer mitochondrial membrane. After being synthesized there, UCP, which could be either extruded into intermembranous space or directed by lateral movement to intermembranous contact sites, was incorporated into inner mitochondrial membrane. Thus, UCP is imported using the so-called "cotranslational transport system."  相似文献   

9.
Uncoupling protein 3 (UCP3) is implicated in mild uncoupling and the regulation of mitochondrial ROS production. We previously showed that UCP3 turns over rapidly in C2C12 myoblasts, with a half-life of 0.5-4h, and that turnover can be reconstituted in vitro. We show here that rapid degradation of UCP3 in vitro in isolated brown adipose tissue mitochondria required the 26S proteasome, ubiquitin, ATP, succinate to generate a high membrane potential, and a pH of 7.4 or less. Ubiquitin containing lysine-48 was both necessary and sufficient to support UCP3 degradation, implying a requirement for polyubiquitylation at this residue. The 20S proteasome did not support degradation. UCP3 degradation was prevented by simultaneously blocking matrix ATP generation and import, showing that ATP in the mitochondrial matrix was required. Degradation did not appear to require a transmembrane pH gradient, but was very sensitive to membrane potential: degradation was halved when membrane potential decreased 10-20mV from its resting value, and was not significant below about 120mV. We propose that matrix ATP and a high membrane potential are needed for UCP3 to be polyubiquitylated through lysine-48 of ubiquitin and exported to the cytosolic 26S proteasome, where it is de-ubiquitylated and degraded.  相似文献   

10.
Previously it was concluded (1) that, differently from UCP1, on expression in Saccharomyces cerevisiae, UCP3, and UCP3 short (UCP3s) are in a deranged state, allowing for unregulated uncoupling. Here we show that the bulk of UCP3 and UCP3s is in extramitochondrial aggregates whether expressed with high or medium expression vectors. The evidence is based on the insolubility of most UCP3 and UCP3s in nonionic detergents such as Triton X100, in contrast to UCP1. Using very high expression vector, macroscopic evidence for extramitochondrial UCP3 containing particles is a viscous white sediment surrounding the mitochondrial fraction which contains UCP3 as inclusion body type aggregate. Together with the previous data it is concluded that uncoupling due to small amounts of incorporated, deranged, and nucleotide insensitive UCP3 prevents incorporation of the bulk of UCP3 into mitochondria. This finding also provides a simple and stringent assay for the state of heterologously expressed in mitochondrial membrane proteins.  相似文献   

11.
Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of “mild uncoupling”. Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis.  相似文献   

12.
Steatotic livers are sensitive to ischemic events and associated ATP depletion. Hepatocellular necrosis following these events may result from mitochondrial uncoupling protein-2 (UCP2) expression. To test this hypothesis, we developed a model of in vitro steatosis using primary hepatocytes from wild-type (WT) and UCP2 knockout (KO) mice and subjected them to hypoxia/reoxygenation (H/R). Using cultured hepatocytes treated with emulsified fatty acids for 24 h, generating a steatotic phenotype (i.e., microvesicular and broad-spectrum fatty acid accumulation), we found that the phenotype of the WT and UCP2 KO were the same; however, cellular viability was increased in the steatotic KO hepatocytes following 4 h of hypoxia and 24 h of reoxygenation; Hepatocellular ATP levels decreased during hypoxia and recovered after reoxygenation in the control and UCP2 KO steatotic hepatocytes but not in the WT steatotic hepatocytes; mitochondrial membrane potential in WT and UCP2 KO steatotic groups was less than control groups but higher than UCP2 KO hepatocytes. Following reoxygenation, lipid peroxidation, as measured by thiobarbituric acid reactive substances, increased in all groups but to a greater extent in the steatotic hepatocytes, regardless of UCP2 expression. These results demonstrate that UCP2 sensitizes steatotic hepatocytes to H/R through mitochondrial depolarization and ATP depletion but not lipid peroxidation.  相似文献   

13.
14.
We assessed the ability of human uncoupling protein 2 (UCP2) to uncouple mitochondrial oxidative phosphorylation when expressed in yeast at physiological and supraphysiological levels. We used three different inducible UCP2 expression constructs to achieve mitochondrial UCP2 expression levels in yeast of 33, 283, and 4100 ng of UCP2/mg of mitochondrial protein. Yeast mitochondria expressing UCP2 at 33 or 283 ng/mg showed no increase in proton conductance, even in the presence of various putative effectors, including palmitate and all-trans-retinoic acid. Only when UCP2 expression in yeast mitochondria was increased to 4 microg/mg, more than an order of magnitude greater than the highest known physiological concentration, was proton conductance increased. This increased proton conductance was not abolished by GDP. At this high level of UCP2 expression, an inhibition of substrate oxidation was observed, which cannot be readily explained by an uncoupling activity of UCP2. Quantitatively, even the uncoupling seen at 4 microgram/mg was insufficient to account for the basal proton conductance of mammalian mitochondria. These observations suggest that uncoupling of yeast mitochondria by UCP2 is an overexpression artifact leading to compromised mitochondrial integrity.  相似文献   

15.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.  相似文献   

16.
Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.  相似文献   

17.
Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure–function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.  相似文献   

18.
19.
The mitochondrial uncoupling protein of brown adipose tissue (UCP1) was expressed in skeletal muscle and heart of transgenic mice at levels comparable with the amount found in brown adipose tissue mitochondria. These transgenic mice have a lower body weight, and when related to body weight, food intake and energy expenditure are increased. A specific reduction of muscle mass was observed but varied according to the contractile activity of muscles. Heart and soleus muscle are unaffected, indicating that muscles undergoing regular contractions, and therefore with a continuous mitochondrial ATP production, are protected. In contrast, the gastrocnemius and plantaris muscles showed a severely reduced mass and a fast to slow shift in fiber types promoting mainly IIa and IIx fibers at the expense of fastest and glycolytic type IIb fibers. These observations are interpreted as a consequence of the strong potential dependence of the UCP1 protonophoric activity, which ensures a negligible proton leak at the membrane potential observed when mitochondrial ATP production is intense. Therefore UCP1 is not deleterious for an intense mitochondrial ATP production and this explains the tolerance of the heart to a high expression level of UCP1. In muscles at rest, where ATP production is low, the rise in membrane potential enhances UCP1 activity. The proton return through UCP1 mimics the effect of a sustained ATP production, permanently lowering mitochondrial membrane potential. This very likely constitutes the origin of the signal leading to the transition in fiber types at rest.  相似文献   

20.
Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure-function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号