首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF)-stimulated proliferation of renal epithelial cells plays an important role in the recovery of kidney tubule epithelia following exposure to insult. Numerous studies have demonstrated that tyrosine phosphorylation of the focal adhesion protein paxillin mediates in part the effects of growth factors on cell growth, migration, and organization of the actin-based cytoskeleton. The experiments in this report were designed to determine the effect of EGF on paxillin phosphorylation in normal rat kidney (NRK) epithelial cells. Interestingly, treatment of NRK cells with EGF stimulated paxillin serine/threonine phosphorylation, which caused a reduction in the mobility of paxillin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The EGF-stimulated mobility shift of paxillin was independent of an intact cytoskeleton, phosphatidylinositol 3-kinase (PI 3-kinase) activation, protein kinase C (PKC) activation, and cellular adhesion. However, inhibitors of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase abrogated the EGF-stimulated change in paxillin mobility. In addition, the EGF-stimulated change in paxillin serine/threonine phosphorylation was not accompanied by a profound reorganization of the actin cytoskeleton. These results identify paxillin as a component EGF signaling in renal epithelial cells and implicate members of the MAP kinase pathway as critical regulators of paxillin serine/threonine phosphorylation.  相似文献   

2.
Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.  相似文献   

3.
Integrin-mediated cell adhesion causes activation of MAP kinases and increased tyrosine phosphorylation of focal adhesion kinase (FAK). Autophosphorylation of FAK leads to the binding of SH2-domain proteins including Src-family kinases and the Grb2–Sos complex. Since Grb2–Sos is a key regulator of the Ras signal transduction pathway, one plausible hypothesis has been that integrin-mediated tyrosine phosphorylation of FAK leads to activation of the Ras cascade and ultimately to mitogen activated protein (MAP) kinase activation. Thus, in this scenario FAK would serve as an upstream regulator of MAP kinase activity. However, in this report we present several lines of evidence showing that integrin-mediated MAP kinase activity in fibroblasts is independent of FAK. First, a β1 integrin subunit deletion mutant affecting the putative FAK binding site supports activation of MAP kinase in adhering fibroblasts but not tyrosine phosphorylation of FAK. Second, fibroblast adhesion to bacterially expressed fragments of fibronectin demonstrates that robust activation of MAP kinase can precede tyrosine phosphorylation of FAK. Finally, we have used FRNK, the noncatalytic COOH-terminal domain of FAK, as a dominant negative inhibitor of FAK autophosphorylation and of tyrosine phosphorylation of focal contacts. Using retroviral infection, we demonstrate that levels of FRNK expression sufficient to completely block FAK tyrosine phosphorylation were without effect on integrin-mediated activation of MAP kinase. These results strongly suggest that integrin-mediated activation of MAP kinase is independent of FAK and indicate the probable existence of at least two distinct integrin signaling pathways in fibroblasts.  相似文献   

4.
Cell-matrix adhesion is a fundamental biological process that governs survival, migration, and proliferation of living eukaryotic cells. Paxillin is an important central player in a network of adhesome proteins that form focal adhesion complexes. Phosphorylation of tyrosine and serine residues in paxillin is critical for the coordinated sequential recruitment of other adaptor and kinase proteins to adhesion complexes. Recently, the phosphorylation of serine178 in paxillin has been shown to be vital for epithelial cell adhesion and migration. In vivo and in vitro evidence have shown that transglutaminase (TG)-2 positively regulates this phosphorylation. Here, we propose three possible mechanisms that may explain these observations. First, TG-2 itself may be an adhesome member directly interacting with paxillin in a non-covalent way. Second, TG-2 may cross link a mitogen-activated protein kinase kinase kinase (MAP3K), which eventually activates c-Jun N-terminal kinase (JNK), and the latter phosphorylates paxillin. Lastly, TG-2 may have intrinsic kinase activity that phosphorylates paxillin. Future studies investigating these hypotheses on TG-2-paxillin relationships are necessary in order to address this fundamental process in cell matrix adhesion signaling.  相似文献   

5.
An early signaling event during the adhesion and spreading of cells is integrin-mediated tyrosine phosphorylation of the cytoskeletal adaptor protein paxillin and the non-receptor tyrosine kinase pp125(FAK) at focal contacts. To determine the influence of surface-charge and -adsorbed adhesion proteins on this signaling pathway, paxillin phosphorylation was examined during attachment of MC3T3-E1 osteoblast-like cell onto charged and uncharged polystyrene, and on adsorbed layers of serum proteins, fibronectin (Fn), vitronectin (Vn), a mixture of Fn and Vn, and albumin. Paxillin phosphorylation was induced 2.4-fold (P < 0.05) on charged vs uncharged polystyrene only in the presence of serum proteins. Activation of paxillin via Fn or Vn alone, or in combination, resulted in significantly lower phosphorylation signals compared to whole serum (41 +/- 6.9%, P < 0.05, 45 +/- 5.9%, P < 0.05, and 76 +/- 9.8%, P < 0.075, respectively). Confocal laser microscopy confirmed increased co-localization of phosphotyrosine and paxillin at protruding lamellopodia of spreading osteoblasts on charged vs uncharged serum-pretreated polystyrene. Taken together, these data suggest that subtle differences in surface characteristics mediate effects on adhering cells via adsorbed serum proteins involving the cytoskeletal adaptor protein paxillin.  相似文献   

6.
The protein tyrosine kinase pp125FAK (focal adhesion kinase, or FAK) is expressed by a variety of cell types and has been implicated in integrin-mediated signaling events. We explored the potential functions of FAK by expressing it de novo in a cell type lacking FAK. We showed previously that cultured human macrophages lack FAK yet still have well-formed focal contacts. Adenovirus-mediated expression of FAK results in the appearance of FAK protein, which localizes to focal contacts and becomes tyrosine-phosphorylated without perturbing overall cell morphology or focal contacts. FAK associates with CSK 48 h after infection and recruits it to focal contacts. Tyrosine phosphorylation of p130cas but not of paxillin is stimulated after FAK expression. The phosphorylation of p130cas is lost at 48 h in parallel with CSK accumulation in focal contacts. The ERK2 form of MAP kinase is similarly activated at 12-24 h, but it also returns to low levels at 48 h. These findings demonstrate that FAK can be reconstituted to focal contacts in cells that lack it without affecting cell morphology or focal contact structure. FAK can regulate the distribution and activities of elements of the MAP kinase signaling pathway.  相似文献   

7.
We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.  相似文献   

8.
Human mesangial cells (HMCs) respond to angiotensin II stimulation, which modulates their physiological activities, i.e., contraction and proliferation. It has been revealed that focal adhesion kinase (FAK) and paxillin participate in the angiotensin II-mediated signaling and cytoskeletal rearrangements at focal adhesion. We investigated the influences of cell adhesion upon angiotensin II effects in HMCs. In adherent cells, both FAK and paxillin were tyrosine phosphorylated by angiotensin II, while the cell detachment completely inhibited the tyrosine phosphorylation of paxillin. Activation of p44/42 mitogen-activated protein (MAP) kinase by angiotensin II was accentuated in suspended cells. Moreover, p190, a member of Rho GTPase activating protein (GAP), and RasGAP were coprecipitated with paxillin in adherent cells and angiotensin II stimulation reduced the formation of paxillin-p190 and paxillin-RasGAP complexes. These results suggest that the formation of focal adhesion complexes accelerated by accumulation of mesangial matrices may inhibit the proliferation of HMCs by modulating MAP kinase activity and be related to mesangial cell depletion.  相似文献   

9.
In the present study, we demonstrated that Ang II provokes a transitory enhancement of focal adhesion kinase (FAK) and paxillin phosphorylation in human umbilical endothelial cells (HUVEC). Moreover, Ang II induces a time- and dose-dependent augmentation in cell migration, but does not affect HUVEC proliferation. The effect of Ang II on FAK and paxillin phosphorylation was markedly attenuated in cells pretreated with wortmannin and LY294002, indicating that phosphoinositide 3-kinase (PI3K) plays an important role in regulating FAK activation. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific inhibitor PP2 for Src family kinases, demonstrating the involvement of protein tyrosine kinases, and particularly Src family of tyrosine kinases, in the downstream signalling pathway of Ang II receptors. Furthermore, FAK and paxillin phosphorylation was markedly blocked after treatment of HUVEC with AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) phosphorylation. Pretreatment of cells with inhibitors of PI3K, Src family tyrosine kinases, and EGFR also decreased HUVEC migration. In conclusion, these results suggest that Ang II mediates an increase in FAK and paxillin phosphorylation and induces HUVEC migration through signal transduction pathways dependent on PI3K and Src tyrosine kinase activation and EGFR transactivation.  相似文献   

10.
Integrin cooperation with growth factor receptors to enable permissive signaling to the mitogen-activated protein (MAP) kinase pathway has important implications for cell proliferation, differentiation, and survival. Here we have sought to determine whether anchorage regulation of the MAP kinase pathway is specific to the alpha chain subunit of the integrins employed during adhesion. Human umbilical vein endothelial cells (HUVECs) anchored via endogenous alpha(2), alpha(3), or alpha(5) integrin subunits or NIH3T3 fibroblast cells lines anchored via ectopically expressed human integrin alpha(2) or alpha(5) subunits displayed comparable MAP kinase activation upon growth factor stimulation, regardless of the integrin alpha chain employed. In contrast, when either cell type was maintained in suspension, growth factor treatment inefficiently activated the MAP kinase pathway. The integrin-mediated enhancement of MAP kinase activation by growth factor correlated with the tyrosine phosphorylation of focal adhesion kinase but was independent of Shc. These data indicate that integrin modulation of the MAP kinase pathway is supported by a variety of integrin complexes and imply that other pathways may be required for the previously reported alpha chain-specific effects on cell cycle regulation and cell differentiation.  相似文献   

11.
MDA-MB-231 cells are highly aggressive human breast adenocarcinoma cells that depend on PLD activity for survival. In response to the stress of serum withdrawal, there is increased motility and invasiveness of these cells that is associated with a rapid increase in PLD activity. In addition, PLD activity is elevated in response to most mitogenic signals. Similar to PLD, paxillin, a focal adhesion adaptor protein, and Erk, mitogen-activated protein kinase, play vital roles in cell motility through regulation of focal adhesion dynamics. Here, we addressed whether there is a functional correlation between paxillin and PLD that may influence cancer cell motility. We investigated the role of PLD activity on paxillin regulation, Erk activation and formation of a paxillin-Erk and paxillin-FAK association. Inhibition of PLD activity led to an increase in paxillin tyrosine phosphorylation, a decrease in Erk activation, as measured by phosphorylation, and enhanced association of paxillin with Erk. In addition, we found that paxillin tyrosine phosphorylation depends upon Erk activity and may be a consequence of an increased association with FAK. Taken together, these results suggest that Erk activity is governed by PLD activity and regulates the tyrosine phosphorylation of paxillin, potentially explaining its role in cell motility. This study indicated that PLD, Erk, paxillin and FAK participate in the same signaling pathway in this breast cancer cell line.  相似文献   

12.
The tumor suppressor PTEN dephosphorylates focal adhesion kinase (FAK) and inhibits integrin-mediated cell spreading and cell migration. We demonstrate here that expression of PTEN selectively inhibits activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. PTEN expression in glioblastoma cells lacking the protein resulted in inhibition of integrin-mediated MAP kinase activation. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)- induced MAPK activation were also blocked. To determine the specific point of inhibition in the Ras/Raf/ MEK/ERK pathway, we examined these components after stimulation by fibronectin or growth factors. Shc phosphorylation and Ras activity were inhibited by expression of PTEN, whereas EGF receptor autophosphorylation was unaffected. The ability of cells to spread at normal rates was partially rescued by coexpression of constitutively activated MEK1, a downstream component of the pathway. In addition, focal contact formation was enhanced as indicated by paxillin staining. The phosphatase domain of PTEN was essential for all of these functions, because PTEN with an inactive phosphatase domain did not suppress MAP kinase or Ras activity. In contrast to its effects on ERK, PTEN expression did not affect c-Jun NH2-terminal kinase (JNK) or PDGF-stimulated Akt. Our data suggest that a general function of PTEN is to down-regulate FAK and Shc phosphorylation, Ras activity, downstream MAP kinase activation, and associated focal contact formation and cell spreading.  相似文献   

13.
A rapid increase in tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and Crk-associated substrate (CAS) are prominent early events triggered by many G protein-coupled receptors (GPCRs), but the mechanisms involved remain unclear. Here, we examined whether the Rho-associated protein serine/threonine kinase family (ROCK) is a critical Rho effector in the pathway that links GPCR activation to the tyrosine phosphorylation of FAK, CAS, and paxillin. Treatment of Swiss 3T3 cells with Y-27632, a preferential inhibitor of ROCK, dramatically inhibited the formation of actin stress fibers, the assembly of focal contacts, and the increase in tyrosine phosphorylation of FAK and paxillin induced by bombesin in these cells. Surprisingly, we found that treatment with Y-27632 did not produce any detectable effect on bombesin-elicited CAS tyrosine phosphorylation even at the highest concentrations of Y-27632 tested. HA-1077, a preferential inhibitor of ROCK activity structurally unrelated to Y-27632, also attenuated the increase in the tyrosine phosphorylation of FAK and paxillin but did not affect the tyrosine phosphorylation of CAS induced by bombesin in Swiss 3T3 cells. The results demonstrate that ROCK-dependent tyrosine phosphorylation of FAK and paxillin can be dissociated from a ROCK-independent pathway leading to tyrosine phosphorylation of CAS.  相似文献   

14.
A rapid increase in tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and Crk-associated substrate (CAS) are prominent early events triggered by many G protein-coupled receptors (GPCRs), but the mechanisms involved remain unclear. Here, we examined whether the Rho-associated protein serine/threonine kinase family (ROCK) is a critical Rho effector in the pathway that links GPCR activation to the tyrosine phosphorylation of FAK, CAS, and paxillin. Treatment of Swiss 3T3 cells with Y-27632, a preferential inhibitor of ROCK, dramatically inhibited the formation of actin stress fibers, the assembly of focal contacts, and the increase in tyrosine phosphorylation of FAK and paxillin induced by bombesin in these cells. Surprisingly, we found that treatment with Y-27632 did not produce any detectable effect on bombesin-elicited CAS tyrosine phosphorylation even at the highest concentrations of Y-27632 tested. HA-1077, a preferential inhibitor of ROCK activity structurally unrelated to Y-27632, also attenuated the increase in the tyrosine phosphorylation of FAK and paxillin but did not affect the tyrosine phosphorylation of CAS induced by bombesin in Swiss 3T3 cells. The results demonstrate that ROCK-dependent tyrosine phosphorylation of FAK and paxillin can be dissociated from a ROCK-independent pathway leading to tyrosine phosphorylation of CAS.  相似文献   

15.
Integrins are important receptors for neuronal adhesion to laminin, which is one of the best promoters of neurite outgrowth. The present study was carried out to understand some of the intracellular mechanisms which allow integrin-mediated neurite extension on laminin. In chicken retinal neurons, integrin-mediated adhesion to laminin and antibody-induced integrin clustering caused an increase in tyrosine phosphorylation of paxillin and focal adhesion kinase. The kinetics of phosphorylation and dephosphorylation of these proteins were different in neurons plated on laminin, compared to neurons in which the receptors were clustered with anti-integrin antibodies. Analysis of sucrose velocity gradients could not show any association of paxillin and focal adhesion kinase with the integrin receptors. On the other hand, by using digitonin and milder extraction conditions, we found an enrichment of the tyrosine-phosphorylated polypeptides in the cytoskeletal, digitonin-insoluble fraction. Furthermore, neuronal adhesion induced a dramatic increase in the fraction of tyrosine-phosphorylated paxillin recovered with the digitonin-insoluble fraction, suggesting redistribution of this protein following adhesion of neurons to laminin. Localization studies on the detergent-insoluble fraction showed codistribution of both paxillin and focal adhesion kinase with integrins. We also found that paxillin tyrosine phosphorylation, but not paxillin expression, is developmentally regulated in the retina. Our results show that integrin-mediated neuronal adhesion leads to the accumulation of a pool of highly phosphorylated proteins at adhesion sites. There they may be responsible for the reorganization of the cytoskeleton, which underlies the process of neurite extension.  相似文献   

16.
MAP kinase is thought to play a pivotal role not only in the growth factor-stimulated signalling pathway but also in the M phase phosphorylation cascade downstream of MPF. MAP kinase is fully active only when both tyrosine and threonine/serine residues are phosphorylated. We have now identified and purified a Xenopus MAP kinase activator from mature oocytes that is able to induce activation and phosphorylation on tyrosine and threonine/serine residues of an inactive form of Xenopus MAP kinase. The Xenopus MAP kinase activator itself is a 45 kDa phosphoprotein and is inactivated by protein phosphatase 2A treatment in vitro. Microinjection of the purified activator into immature oocytes results in immediate activation of MAP kinase. Further experiments using microinjection as well as cell free extracts have shown that Xenopus MAP kinase activator is an intermediate between MPF and MAP kinase. Thus, MAP kinase activator plays a key role in the phosphorylation cascade.  相似文献   

17.
Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.  相似文献   

18.
Mechanical strain is necessary for normal lung growth and development. Individuals with respiratory failure are supported with mechanical ventilation, leading to altered lung growth and injury. Understanding signaling pathways initiated by mechanical strain in lung epithelial cells will help guide development of strategies aimed at optimizing strain-induced lung growth while mitigating ventilator-induced lung injury. To study strain-induced proliferative signaling, focusing on the role of reactive oxidant species (ROS) and p42/44 mitogen-activated protein (MAP) kinase, human pulmonary epithelial H441 and MLE15 cells were exposed to equibiaxial cyclic mechanical strain. ROS were increased within 15 min of strain. N-acetylcysteine inactivated strain-induced ROS and inhibited p42/44 MAP kinase phosphorylation and strain-induced proliferation. PD98059 and UO126, p42/44 MAP kinase inhibitors, blocked strain-induced proliferation. To verify the specificity of p42/44 MAP kinase inhibition, cells were transfected with dominant-negative mitogen-activated protein kinase kinase-1 plasmid DNA. Transfected cells did not proliferate in response to mechanical strain. To determine whether strain-induced tyrosine kinase activity is necessary for strain-induced ROS-p42/44 MAP kinase signaling, genistein, a tyrosine kinase inhibitor, was used. Genistein did not block strain-induced ROS production or p42/44 MAP kinase phosphorylation. Gadolinium, a mechanosensitive calcium channel blocker, blocked strain-induced ROS production and p42/44 MAP kinase phosphorylation but not strain-induced tyrosine phosphorylation. These data support ROS production and p42/44 MAP kinase phosphorylation being involved in a common strain-induced signaling pathway, necessary for strain-induced proliferation in pulmonary epithelial cells, with a parallel strain-induced tyrosine kinase pathway.  相似文献   

19.
We previously reported that the enterocytic differentiation of human colonic Caco-2 cells correlated with down-regulation of fibronectin (FN) and laminin (LN), two extracellular matrix components interacting with cell surface integrin receptors. We now investigated whether Caco-2 cell differentiation was associated with alterations in integrin signaling with special interest in the expression and activity of focal adhesion kinase (FAK) and mitogen-activated protein (MAP) kinase. The differentiation of Caco-2 cells was associated with: 1) down-regulation of beta1 integrin expression at the mRNA and protein levels; 2) increased FAK expression together with decreased FAK autophosphorylation; 3) decreased FAK's ability to associate with PI3-kinase and pp60c-src; and 4) increased MAP kinase expression along with decreased MAP activity. In addition, we show that FAK and MAP kinase belong to distinct integrin signaling pathways and that both pathways remain functional during Caco-2 cell differentiation since the coating of differentiating cells on FN and LN but not on polylysine increased the tyrosine phosphorylation of FAK and of its endogenous substrate paxillin, and stimulated MAP kinase activity. In conclusion, our results provide evidence that FAK and MAP kinase, two signaling molecules activated independently by beta1 integrins in Caco-2 cells, undergo alterations of both expression and activity during the enterocytic differentiation of this cell line.  相似文献   

20.
Beta 1 integrins provide a costimulus for TCR/CD3-driven T cell activation and IL-2 production in human peripheral T cells. However, this beta 1 integrin-mediated costimulation is impaired in a human T lymphoblastic line, Jurkat. We studied the molecular basis of this impaired costimulation and found that Cas-L, a 105-kDa docking protein, is marginally expressed in Jurkat T cells, whereas Cas-L is well expressed in peripheral T cells. Cas-L is a binding protein and a substrate for focal adhesion kinase and is tyrosine phosphorylated by beta 1 integrin stimulation. We here show that the transfection of wild-type Cas-L in Jurkat T cells restores beta 1 integrin-mediated costimulation. However, Cas-L transfection had no effect on CD28-mediated costimulation, indicating that Cas-L is specifically involved in the beta 1 integrin-mediated signaling pathway. Furthermore, transfection of the Cas-L Delta SH3 mutant failed to restore beta 1 integrin-mediated costimulation in Jurkat cells. Cas-L Delta SH3 mutant lacks the binding site for focal adhesion kinase and is not tyrosine phosphorylated after beta 1 integrin stimulation. These findings strongly suggest that the tyrosine phosphorylation of Cas-L plays a key role in the signal transduction in the beta 1 integrin-mediated T cell costimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号