首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzoate stimulates glutamate release from perfused rat liver.   总被引:1,自引:1,他引:0       下载免费PDF全文
In isolated perfused rat liver, benzoate addition to the influent perfusate led to a dose-dependent, rapid and reversible stimulation of glutamate output from the liver. This was accompanied by a decrease in glutamate and 2-oxoglutarate tissue levels and a net K+ release from the liver; withdrawal of benzoate was followed by re-uptake of K+. Benzoate-induced glutamate efflux from the liver was not dependent on the concentration (0-1 mM) of ammonia (NH3 + NH4+) in the influent perfusate, but was significantly increased after inhibition of glutamine synthetase by methionine sulphoximine or during the metabolism of added glutamine (5 mM). Maximal rates of benzoate-stimulated glutamate efflux were 0.8-0.9 mumol/min per g, and the effect of benzoate was half-maximal (K0.5) at 0.8 mM. Similar Vmax. values of glutamate efflux were obtained with 4-methyl-2-oxopentanoate, ketomethionine (4-methylthio-2-oxobutyrate) and phenylpyruvate; their respective K0.5 values were 1.2 mM, 3.0 mM and 3.8 mM. Benzoate decreased hepatic net ammonia uptake and synthesis of both urea and glutamine from added NH4Cl. Accordingly, the benzoate-induced shift of detoxication from urea and glutamine synthesis to glutamate formation and release was accompanied by a decreased hepatic ammonia uptake. The data show that benzoate exerts profound effects on hepatic glutamate and ammonia metabolism, providing a new insight into benzoate action in the treatment of hyperammonaemic syndromes.  相似文献   

2.
目的建立四氯化碳诱导的兔肝纤维化动物模型,观察体外分离标记的自体骨髓单核细胞(ABM-MNCs)经肠系膜上静脉自体移植至肝纤维化区及周边区后的存活、定植状况。方法将40只普通级日本大耳家兔随机分为细胞移植组和对照组各20只,实验组腹腔注射40%CCl4橄榄油溶液建立肝纤维化模型,对照组腹腔注射等量生理盐水。细胞移植组于模型稳定后自体髂骨处抽取骨髓,采用氯化氨红细胞溶解法分离得到单核细胞,以5溴-2脱氧尿嘧啶核苷(BrdU)标记体外ABM-MNCs及鉴定;分离培养ABM-MNCs,将3×10^9个ABM-MNCs经肠系膜上静脉回输体内,对照组回输等量生理盐水,移植前、移植后3、7、14、21 d分别取肝组织固定,进行免疫组织化学检测。结果BrdU体外标记ABM-MNCs的免疫组织化学表现示:20μmol/L BrdU孵育ABM-MNCs 72 h的阳性标记率达95%;肝组织20μmol/L BrdU免疫组化染色切片显示:自体骨髓单核细胞移植后第3天,肝小叶中央静脉周围BrdU染色阳性,随着时间的推移,阳性染色逐渐增强,并逐步向肝组织内部延伸。阳性染色主要分布于肝组织汇管区周围组织,而对照组BrdU染色则阴性。结论ABM-MNCs经肠系膜上静脉移植后,可在纤维化区及周边区存活,定植。  相似文献   

3.
The mechanisms involved in ammonia uptake by rat liver cells and the effects of changes in extracellular pH have been investigated in vivo and in vitro. When NH4Cl solutions were infused in the hepatic portal vein, ammonia uptake by the liver was practically quantitative up to about 1 mM in afferent blood. Ammonia transfer into hepatocytes was extremely rapid: for 2 mM ammonia in external medium, the intracellular concentration reached 5 mM within 10 s. Comparatively, [14C]methylamine influx was slower and the cell concentrations did not reach a steady-state level, probably in relation with diffusion into the acidic lysosomal compartment. Intracellular accumulation of ammonia was dependent on the delta pH across the plasma membrane: the distribution ratio (internal/external) was about 1 for an external pH of 6.8 and about 5 at pH 8. Urea synthesis was maximal at physiological pH and markedly declined at pH 7.05. This inhibition was not affected by manipulation of bicarbonate concentrations in the medium, down to 10 mM. Additional inhibition of ureogenesis by 100 microM acetazolamide was also observed, particularly at low concentrations of bicarbonate in the medium. Inhibition of ureogenesis when extracellular pH is decreased could be ascribed to a lower availability of the NH3 form. Assuming that NH3 readily equilibrates between the various compartments, the availability of free ammonia for carbamoyl-phosphate synthesis could be tightly dependent on extracellular pH.  相似文献   

4.
Chronic high-protein consumption leads to increased concentrations of NH(4)(+)/NH(3) in the colon lumen. We asked whether this increase has consequences on colonic epithelial cell metabolism. Rats were fed isocaloric diets containing 20 (P20) or 58% (P58) casein as the protein source for 7 days. NH(4)(+)/NH(3) concentration in the colonic lumen and in the colonic vein blood as well as ammonia metabolism by isolated surface colonic epithelial cells was determined. After 2 days of consumption of the P58 diet, marked increases of luminal and colonic vein blood NH(4)(+)/NH(3) concentrations were recorded when compared with the values obtained in the P20 group. Colonocytes recovered from the P58 group were characterized at that time and thereafter by an increased capacity for l-ornithine and urea production through arginase (P < 0.05). l-Ornithine was mostly used in the presence of NH(4)Cl for the synthesis of the metabolic end product l-citrulline. After 7 days of the P58 diet consumption, however, the ammonia metabolism into l-citrulline was found lower (P < 0.01) when compared with the values measured in the colonocytes recovered from the P20 group despite any decrease in the related enzymatic activities (i.e., carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase). This decrease was found to coincide with a return of blood NH(4)(+)/NH(3) concentration in colonic portal blood to values close to the one recorded in the P20 group. In response to increased NH(4)(+)/NH(3) concentration in the colon, the increased capacity of the colonocytes to synthesize l-ornithine is likely to correspond to an elevated l-ornithine requirement for the elimination of excessive blood ammonia in the liver urea cycle. Moreover, in the presence of NH(4)Cl, colonocytes diminished their synthesis capacity of l-citrulline from l-ornithine, allowing a lower cellular utilization of this latter amino acid. These results are discussed in relationship with an adaptative process that would be related to both interorgan metabolism and to the role of the colonic epithelium as a first line of defense toward luminal NH(4)(+)/NH(3) concentrations.  相似文献   

5.
Activation of hepatic nerves increases both hepatic glucose production (HGP) and hepatic arterial vasoconstriction, the latter best described by a decrease of hepatic arterial conductance (HAC). Because activation of canine hepatic nerves releases the neuropeptides galanin and neuropeptide Y (NPY) as well as the classical neurotransmitter norepinephrine (NE), we sought to determine the relative role of these neuropeptides vs. norepinephrine in mediating metabolic and vascular responses of the liver. We studied the effects of local exogenous infusions of galanin and NPY on HGP and HAC to predict the metabolic and vascular function of endogenously released neuropeptide. Galanin (n = 8) or NPY (n = 4) was infused with and without NE directly into the common hepatic artery of halothane-anesthetized dogs, and we measured changes in HGP and HAC. A low dose of exogenous galanin infused directly into the hepatic artery potentiated the HGP response to NE yet had little effect on HGP when infused alone. The same dose of galanin infused into a peripheral vein (n = 8) did not potentiate the HGP response to NE, suggesting that the locally infused galanin acted directly on the liver to modulate NE's metabolic action. In contrast, a large dose of exogenous NPY failed to influence HGP when infused either alone or in combination with NE. Finally, NPY, but not galanin, tended to decrease HAC when infused alone; neither neuropeptide potentiated the HAC response to NE. Therefore, both hepatic neuropeptides may contribute to the action of sympathetic nerves on liver metabolism and blood flow. It is likely that endogenous hepatic galanin acts directly on the liver to selectively modulate norepinephrine's metabolic action, whereas endogenous hepatic NPY acts independently of NE to cause vasoconstriction.  相似文献   

6.
In the chronically cannulated cow, the hepatic extraction ratio for intravenous boluses of morphine, diamorphine, fentanyl, methadone and buprenorphine increased towards a plateau value as portal vein drug concentration increased. An extraction ratio close to zero for morphine was observed at a portal vein plasma drug concentration of about 200 nanomol per litre, which is within the range for significant pharmacodynamic effects. The similar concentrations extrapolated for the other narcotics would be of less pharmacodynamic importance. The phenomenon did not depend with morphine on the history of drug delivery to the liver; measurement of hepatic blood flow showed the effect was not an artifact of unrepresentative blood sampling, and was not related to any action of the narcotics on hepatic blood flow. The existence of this novel type of concentration dependent hepatic extraction ratio in vivo can explain a number of anomalous observations on narcotic pharmacokinetics, especially for morphine. Furthermore, similar behaviour may be expected for non-opioid drugs having similar pharmacokinetic properties.  相似文献   

7.
李成  谷青  刘新  孙明伟  王充强 《生物磁学》2011,(17):3311-3314
目的:探讨肝硬化患者肝脏右叶、左叶体积变化,检测肝硬化患者门静脉血流情况,分析二者之间的关系,以及门静脉血流与肝功能之间关系。方法:本研究纳入54例肝硬化患者和40例正常人,采用超声多普勒方法分析这些受试者的肝脏体积和门静脉主干及左右分支的内径、血流速、流量数据,并通过静脉血检测白蛋白、胆红素、胆碱酯酶水平等评估患者肝功能水平。结果:肝硬化组平均年龄46.3岁,男性32例,其中childA级患者16例,childB级患者27例,childC级患者11例;正常对照组平均年龄41.8岁,男性24例。肝硬化组患者右左肝叶之比明显低于正常对照组(p〈0.05),门静脉内径和血流量明显高于正常对照组(p〈0.05).随着child分级升高,门静脉血流量也明显升高。肝硬化组门静脉右支血流量明显低于左支血流量(p〈0.05);此外肝硬化患者门静脉右支和左支血流量之比明显低于正常人群门静脉右左支之比(p〈0.05);而且肝硬化患者门静脉右左支血流量之比与右左肝叶具有明显的相关性与右左肝叶之比具有明显的相关性(r=0.64,p〈0.05)。结论:评估肝硬化病人门静脉血流情况,对于判断肝脏病理变化程度,评价治疗效果,以及选择治疗方案方面都具有重要的临床价值  相似文献   

8.
The substrates for hepatic ureagenesis are equimolar amounts of ammonium and aspartate. The study design mimics conditions in which the liver receives more NH(+)(4) than aspartate precursors (very low-protein diet). Fasted dogs, fitted acutely with transhepatic catheters, were infused with a tracer amount of (15)NH(4)Cl. From arteriovenous differences, the major NH(+)(4) precursor for hepatic ureagenesis was via deamidation of glutamine in the portal drainage system (rather than in the liver), because there was a 1:1 stoichiometry between glutamine disappearance and NH(+)(4) appearance, and the amide (but not the amine) nitrogen of glutamine supplied the (15)N added to the portal venous NH(+)(4) pool. The liver extracted all this NH(+)(4) from glutamine deamidation plus an additional amount in a single pass, suggesting that there was an activator of hepatic ureagenesis. The other major source of nitrogen extracted by the liver was [(14)N]alanine. Because alanine was not produced in the portal venous system, we speculate that it was derived ultimately from proteins in peripheral tissues.  相似文献   

9.
In a non-recirculating system of isolated liver perfusion, stimulation of urea synthesis by NH4Cl is followed by a decrease of effluent pH by up to 0.2 pH unit. This effect is not observed when urea synthesis is inhibited by amino-oxyacetate or norvaline. When the urea formed by the liver is immediately hydrolysed with urease before the effluent perfusate reaches the pH electrode, the urea-synthesis-induced acidification is no longer observed. This indicates that accompanying alterations in hepatic metabolism after stimulation of urea synthesis, such as increased energy provision and consumption, are not responsible for the extracellular acidification, but that the effect is due to the formation of urea itself. The acidification of the extracellular space after stimulation of urea synthesis by NH4Cl is quantitatively explained by the consumption of 2 mol of HCO3-/mol of urea formed: 1 mol being incorporated into urea, the other being protonated to yield CO2 and H2O. The data match the theoretically predicted HCO3- consumption during ureogenesis and underline the role of hepatic urea synthesis for disposal of HCO3- by converting it into the excretable products CO2 and urea.  相似文献   

10.
We have utilized [(15)N]alanine or (15)NH(3) as metabolic tracers in order to identify sources of nitrogen for hepatic ureagenesis in a liver perfusion system. Studies were done in the presence and absence of physiologic concentrations of portal venous ammonia in order to test the hypothesis that, when the NH(4)(+):aspartate ratio is >1, increased hepatic proteolysis provides cytoplasmic aspartate in order to support ureagenesis. When 1 mm [(15)N]alanine was the sole nitrogen source, the amino group was incorporated into both nitrogens of urea and both nitrogens of glutamine. However, when studies were done with 1 mm alanine and 0.3 mm NH(4)Cl, alanine failed to provide aspartate at a rate that would have detoxified all administered ammonia. Under these circumstances, the presence of ammonia at a physiologic concentration stimulated hepatic proteolysis. In perfusions with alanine alone, approximately 400 nmol of nitrogen/min/g liver was needed to satisfy the balance between nitrogen intake and nitrogen output. When the model included alanine and NH(4)Cl, 1000 nmol of nitrogen/min/g liver were formed from an intra-hepatic source, presumably proteolysis. In this manner, the internal pool provided the cytoplasmic aspartate that allowed the liver to dispose of mitochondrial carbamyl phosphate that was rapidly produced from external ammonia. This information may be relevant to those clinical situations (renal failure, cirrhosis, starvation, low protein diet, and malignancy) when portal venous NH(4)(+) greatly exceeds the concentration of aspartate. Under these circumstances, the liver must summon internal pools of protein in order to accommodate the ammonia burden.  相似文献   

11.
S Uyama  A Tanaka  K Tanaka  K Ozawa 《Life sciences》1991,49(23):1747-1754
Oxygen consumption and urea synthesis from ammonium chloride (NH4Cl) were investigated in the liver preserved in University of Wisconsin solution at 4 degrees C for 24 hours using an isolated rat liver perfusion system in which the perfusate contained five different concentrations of NH4Cl. When a Michaelis-Menten equation was applied to oxygen consumption and urea synthesis against NH4Cl concentration, the preserved liver showed smaller increase in oxygen consumption rate and larger Km of urea synthesis for NH4Cl than the fresh liver. The ratio of respiration velocity without any substrate to maximal velocity (v/Vmax), which reflects the mitochondrial functional reserve, was 55.9 +/- 4.1% and 41.5 +/- 4.8% in the preserved and fresh liver, respectively (p less than 0.05). From the viewpoint of work-cost relationship, it was shown that the mitochondrial function in the preserved liver was deteriorated. On the other hand, conventional mitochondrial study after rewarming and reoxygenation but before NH4Cl load revealed no deterioration of mitochondrial function after preservation. These results indicate that it is necessary to take the metabolic load on the reperfused liver into account when assessing graft viability, and that high v/Vmax suggests decrease in the reserve of mitochondrial function under consideration of the metabolic load.  相似文献   

12.
Lactate is produced by the sheep placenta and is an important metabolic substrate for fetal sheep. However, lactate uptake and release by the fetal liver have not been assessed directly. We measured lactate flux across the liver in 16 fetal sheep at 129 (120-138) days gestation that had catheters chronically maintained in the fetal descending aorta, inferior vena cava, right or left hepatic vein, and umbilical vein. Lactate and hemoglobin concentrations and oxygen saturation were measured in blood drawn from all vessels. Umbilical venous, portal venous, and hepatic blood flow were measured by injecting radionuclide-labeled microspheres into the umbilical vein while obtaining a reference sample from the descending aorta. We found net hepatic uptake of lactate (5.0 +/- 4.4 mg/min per 100 g liver). A large quantity of lactate was delivered to the liver (94.2 +/- 78.1 mg/min per 100 g), so that the hepatic extraction of lactate was only 7.7 +/- 6.5%. Hepatic oxygen consumption was 3.18 +/- 3.3 ml/min per 100 g, and the hepatic lactate/oxygen quotient was 2.07 +/- 1.54. There was no significant correlation between hepatic lactate uptake and hepatic lactate or glucose delivery, hepatic oxygen consumption, hepatic blood flow, hepatic glucose flux, total body oxygen consumption, arterial pH, oxygen content, or oxygen saturation. There was, however, a significant correlation between hepatic lactate uptake and umbilical lactate uptake (r = 0.74, P less than 0.005) such that net hepatic lactate uptake was nearly equivalent to that produced across the umbilical-placental circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The present study was undertaken to assess the influence of acute metabolic acidosis on the activity of renin-angiotensin-aldosterone system and renal function in a group of seven one-week-old neonates with mean birth weight of 2164 g (range: 1300-3750 g) and mean gestational age of 34 weeks (range: 28-40 weeks) undergoing oral NH4Cl load. NH4Cl was given in a dose of 2.8 mEq/kg to evaluate renal acidification. Prior to and following NH4Cl administration blood acid-base parameters, plasma urinary electrolytes, creatinine and aldosterone concentration as well as plasma renin activity, glomerular filtration rate, urine flow rate and net acid secretion were measured. NH4Cl administration significantly depressed blood pH (P < 0.05), total CO2 content (P < 0.01) and base excess (P < 0.01) and resulted in a significant elevation of plasma potassium concentration (P < 0.05). Furthermore, NH4Cl ingestion significantly increased urine flow rate, sodium, chloride and net acid excretion. In response to NH4Cl acidosis no consistent change in plasma renin activity and plasma aldosterone concentration could be detected. There was, however, an about 50% increase in urinary aldosterone excretion from the control value of 4.1 +/- 1.2 micrograms/day to 6.8 +/- 2.3 micrograms/day (P < 0.05) after NH4Cl administration. These data suggest that the responsiveness of neonatal adrenals to stimulation by metabolic acidosis is blunted, acidosis therefore, may play a minor role in the neonatal hyperfunction of renin-angiotensin-aldosterone system.  相似文献   

14.
The effects of the energy-dependent process of urea synthesis from NH4Cl on the partition of [1-14C]palmitate between oxidation and esterification were examined in hepatocytes of fed rats. A high rate of urea formation from NH4Cl resulted in stimulation of total palmitate oxidation by 25 and 15% at 0.2 and 1 mM fatty acid, respectively. The stimulation of palmitate oxidation was reciprocally correlated with diminished palmitate incorporation into lipids, mainly triacylglycerols. This relationship was almost stoichiometric. NH4Cl increased the palmitate oxidation/esterification ratio from 0.72 to 1.13 and from 0.94 to 1.36 in the presence of 0.2 mM and 1 mM palmitate, respectively. The transaminase inhibitor, aminooxyacetate, strongly inhibited urea synthesis from NH4Cl, had little effect on the low beta-hydroxybutyrate/acetoacetate ratio in the presence of NH4Cl, completely reversed the changes in palmitate metabolism caused by NH4Cl and did not affect palmitate metabolism in the absence of NH4Cl. Therefore, the increased utilization of energy for urea synthesis was the causative factor by which NH4Cl stimulated total palmitate oxidation and led in consequence to its decreased esterification into lipids. Accordingly, these observations indicate that in liver cells the rate of ATP utilization is one of the determinants of triacylglycerol synthesis.  相似文献   

15.
16.
Blood flow to the placenta and lower body of control and growth retarded (IUGR) guinea pig fetuses was measured between 60-64 days of pregnancy by the microsphere technique. Further information about the hepatic blood supply and its interlobular distribution was obtained by injecting microspheres into the umbilical vein and a branch of the portal vein. Liver weight was reduced by 60% in IUGR fetuses from 5.0 +/- 0.2 to 2.0 +/- 0.1 g, compared to a decrease in body weight of 50% from 91.6 +/- 3.0 to 45.4 +/- 2.6 g. In addition, there was a proportionately greater reduction in the size of the right liver lobe. Umbilical blood flow was 10.8 +/- 1.0 ml min-1 in control fetuses and 4.9 +/- 1.2 ml.min-1 in IUGR fetuses, whilst blood flow in the portal vein was reduced from 1.4 +/- 0.1 to 0.8 +/- 0.3 ml min-1 and that in the hepatic artery from 0.6 +/- 0.1 to 0.3 +/- 0.1 ml.min-1. Since ductus venosus flow was absent or negligible, the umbilical venous return accounted for greater than 80% of the hepatic blood supply in both control and IUGR fetuses. Blood flows were, however, unequally distributed between the liver lobes. The right lobe was supplied mainly by the portal vein in IUGR fetuses as well as the controls, and received less than 6% of the umbilical venous return. No significant change occurred in total liver perfusion, which was 2.8 +/- 0.2 ml min-1 per g in control fetuses and 2.6 +/- 0.4 ml min-1 per g in IUGR fetuses. It is therefore suggested that a high rate of liver metabolism is maintained in IUGR, but by a smaller tissue mass, and that the rate of umbilical blood flow may be one factor determining the size of the liver. The relatively greater reduction in size of the right lobe in IUGR is probably the result of poor oxygenation of the portal venous blood.  相似文献   

17.
1. Urea synthesis was studied in isolated perfused rat liver during cell volume regulatory ion fluxes following exposure of the liver to anisotonic perfusion media. Lowering of the osmolarity in influent perfusate from 305 mOsm/l to 225 mOsm/l (by decreasing influent [NaCl] by 40 mmol/l) led to an inhibition of urea synthesis from NH4Cl (0.5 mmol/l) by about 60% and a decrease of hepatic oxygen uptake by 0.43 +/- 0.03 mumol g-1 min-1 [from 3.09 +/- 0.13 mumol g-1 min-1 to 2.66 +/- 0.12 mumol g-1 min-1 (n = 9)]. The effects on urea synthesis and oxygen uptake were observed throughout hypotonic exposure (225 mOsm/l). They persisted although volume regulatory K+ efflux from the liver was complete within 8 min and were fully reversible upon reexposure to normotonic perfusion media (305 mOsm/l). A 42% inhibition of urea synthesis from NH4Cl (0.5 mmol/l) during hypotonicity was also observed when the perfusion medium was supplemented with glucose (5 mmol/l). Urea synthesis was inhibited by only 10-20% in livers from fed rats, and was even stimulated in those from starved rats when an amino acid mixture (twice the physiological concentration) plus NH4Cl (0.2 mmol/l) was infused. 2. The inhibition of urea synthesis from NH4Cl (0.5 mmol/l) during hypotonicity was accompanied by a threefold increase of citrulline tissue levels, a 50-70% decrease of the tissue contents of glutamate, aspartate, citrate and malate, whereas 2-oxoglutarate, ATP and ornithine tissue levels, and the [3H]inulin extracellular space remained almost unaltered. Further, hypotonic exposure stimulated hepatic glutathione (GSH) release with a time course roughly paralleling volume regulatory K+ efflux. NH4Cl stimulated lactate release from the liver during hypotonic but not during normotonic perfusion. In the absence of NH4Cl, hypotonicity did not significantly affect the lactate/pyruvate ratio in effluent perfusate. With NH4Cl (0.5 mmol/l) present, the lactate/pyruvate ratio increased from 4.3 to 8.2 in hypotonicity, whereas simultaneously the 3-hydroxybutyrate/acetoacetate ratio slightly, but significantly decreased. 3. Addition of lactate (2.1 mmol/l) and pyruvate (0.3 mmol/l) to influent perfusate did not affect urea synthesis in normotonic perfusions, but completely prevented the inhibition of urea synthesis from NH4Cl (0.5 mmol/l) induced by hypotonicity. Restoration of urea production in hypotonic perfusions by addition of lactate and pyruvate was largely abolished in the presence of 2-cyanocinnamate (0.5 mmol/l). Addition of 3-hydroxybutyrate (0.5 mmol/l), but not of acetoacetate (0.5 mmol/l) largely reversed the hypotonicity-induced inhibition of urea synthesis from NH4Cl.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The African sharptooth catfish Clarias gariepinus lives in freshwater, is an obligatory air breather, and exhibits high tolerance of environmental ammonia. This study aimed at elucidating the strategies adopted by C. gariepinus to defend against ammonia toxicity during ammonia exposure. No carbamoyl phosphate synthetase (CPS) I or III activities were detected in the liver or muscle of the adult C. gariepinus. In addition, activities of other ornithine-urea cycle (OUC) enzymes, especially ornithine transcarbamylase, were low in the liver, indicating that adult C. gariepinus does not have a "functional" hepatic OUC. After being exposed to 50 or 100 mM NH4Cl for 5 d, there was no induction of hepatic OUC enzymes and no accumulation of urea in tissues of the experimental animals. In addition, the rate of urea excretion remained low and unchanged. Hence, ammonia exposure did not induce ureogenesis or ureotely in C. gariepinus as suggested elsewhere for another obligatory air-breathing catfish of the same genus, Clarias batrachus, from India. Surprisingly, the local C. batrachus did not possess any detectable CPS I or III activities in the liver or muscle as had been reported for the Indian counterpart. There were no changes in levels of alanine in the muscle, liver, and plasma of C. gariepinus exposed to 50 or 100 mM NH4Cl for 5 d; neither were there any changes in the glutamine levels in these tissues. Yet even after being exposed to 100 mM NH4Cl for 5 d, there was no significant increase in the level of ammonia in the muscle, which constitutes the bulk of the specimen. In addition, the level of ammonia accumulated in the plasma was relatively low compared to other tropical air-breathing fishes. More importantly, for all NH4Cl concentrations tested (10, 50, or 100 mM), the plasma ammonia level was maintained relatively constant (2.2-2.4 mM). These results suggest that C. gariepinus was able to excrete endogenous ammonia and infiltrated exogenous ammonia against a very steep ammonia gradient. When exposed to freshwater (pH 7.0) with or without 10 mM NH4Cl, C. gariepinus was able to excrete ammonia continuously to the external medium for at least 72 h. This was achieved while the plasma NH4+ and NH3 concentrations were significantly lower than those of the external medium. Diffusion trapping of NH3 through boundary layer acidification can be eliminated as the pH of the external medium became more alkaline instead. These results represent the first report on a freshwater fish (C. gariepinus) adopting active excretion of ammonia (probably NH4+) as a major strategy to defend against ammonia toxicity when exposed to environmental ammonia.  相似文献   

19.
Effects of norepinephrine on gluconeogenesis and ureogenesis from glutamine by hepatocytes from fasted rats were assessed. Comparisons were made to asparagine metabolism and to the effects of NH4Cl and dibutyryl cyclic AMP. With asparagine as substrate, aspartate content was very high but norepinephrine, dibutyryl cyclic AMP, or NH4Cl had little effect on gluconeogenesis or ureogenesis. Metabolism of asparagine could be greatly enhanced by the combination of oleate, ornithine, and NH4Cl. However, even under these conditions, asparatate content remained high, and norepinephrine and dibutyryl cyclic AMP had little influence on glucose or urea synthesis. With glutamine as substrate, aspartate content was much lower, but was greatly elevated by norepinephrine, dibutyryl cyclic AMP, or NH4Cl. Each of these effectors strongly stimulated glucose and urea formation from glutamine. NH4Cl stimulation was accompanied by an increased glutamate and decreased alpha-ketoglutarate content. This suggests the mechanism for NH4Cl stimulation is a near-equilibrium adjustment to ammonia by glutamate dehydrogenase and aspartate aminotransferase rather than a principal involvement of glutaminase. Although both norepinephrine and dibutyryl cyclic AMP lowered alpha-ketoglutarate to the same extent, norepinephrine more rapidly increased aspartate content and led to a smaller accumulation of glutamate than did dibutyryl cyclic AMP. Moreover, only norepinephrine led to a rapid increase in succinyl-CoA concentration. The catecholamine effect could not be explained by specific changes in cytosolic or mitochondrial redox states. The results suggest that alpha-ketoglutarate dehydrogenase is a site of catecholamine action in rat liver. Since purified alpha-ketoglutarate dehydrogenase is known to be Ca2+ stimulated and Ca2+ flux is involved in catecholamine action, these findings also suggest that mitochondrial Ca2+ is elevated by catecholamines.  相似文献   

20.
Serine dehydratase (SDH) is abundant in the rat liver but scarce in the kidney. When administrated with dexamethasone, the renal SDH activity was augmented 20-fold, whereas the hepatic SDH activity was affected little. In situ hybridization and immunohistochemistry revealed that SDH was localized to the proximal straight tubule of the nephron. To address the role of this hormone, rats were made acidotic by gavage of NH(4)Cl. Twenty-two hours later, the SDH activity was increased three-fold along with a six-fold increment in the phosphoenolpyruvate carboxykinase (PEPCK) activity, a rate-limiting enzyme of gluconeogenesis. PEPCK, which is localized to the proximal tubules under the normal condition, spreads throughout the entire cortex to the outer medullary rays by acidosis, whereas SDH does not change regardless of treatment with dexamethasone or NH(4)Cl. When NH(4)Cl was given to adrenalectomized rats, in contrast to the SDH activity no longer increasing, the PEPCK activity responded to acidosis to the same extent as in the intact rats. A simultaneous administration of dexamethasone and NH(4)Cl into the adrenalectomized rats fully restored the SDH activity, demonstrating that the rise in the SDH activity during acidosis is primarily controlled by glucocorticoids. The present findings clearly indicate that the localization of SDH and its hormonal regulation during acidosis are strikingly different from those of PEPCK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号