首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double‐stranded DNA‐binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N‐terminus, a central H1/H5‐like domain and a C‐terminally located coiled‐coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double‐stranded DNA in vitro, while the central H1/H5‐like domain interacts non‐specifically with DNA sequences and mediates protein–protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5‐like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle‐regulated, as the level of nuclear‐associated GFP diminishes during mitotic entry and GFP progressively re‐associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell‐cycle progression, with the other involving rapid exchange.  相似文献   

2.
Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB21–64) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB21–64 and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.  相似文献   

3.
We previously searched for interactions between plant telomere-binding proteins and found that AtTRB1, from the single-myb-histone (Smh) family, interacts with the Arabidopsis POT1-like-protein, AtPOT1b, involved in telomere capping. Here we identify domains responsible for that interaction. We also map domains in AtTRB1 responsible for interactions with other Smh-family-members. Our results show that the N-terminal OB-fold-domain of AtPOT1b mediates the interaction with AtTRB1. This domain is characteristic for POT1- proteins and is involved with binding the G-rich-strand of telomeric DNA. AtPOT1b also interacts with AtTRB2 and AtTRB3. The central histone-globular-domain of AtTRB1 is involved with binding to AtTRB2 and 3, as well as to AtPOT1b. AtTRB1-heterodimers with other Smh-family-members are more stable than AtTRB1-homodimers. Our results reveal interaction networks of plant telomeres.  相似文献   

4.
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes. Many telomere-binding proteins bind to telomeric repeat sequences and further generate T-loops in animals. However, it is not clear if they regulate telomere organization using epigenetic mechanisms and how the epigenetic molecules are involved in regulating the telomeres. Here, we show direct interactions between the telomere-binding protein, AtTRB2 and histone deacetylases, HDT4 and HDA6, in vitro and in vivo. AtTRB2 mediates the associations of HDT4 and HDA6 with telomeric repeats. Telomere elongation is found in AtTRB2, HDT4 and HDA6 mutants over generations, but also in met1 and cmt3 DNA methyltransferases mutants. We also characterized HDT4 as an Arabidopsis H3K27 histone deacetylase. HDT4 binds to acetylated peptides at residue K27 of histone H3 in vitro, and deacetylates this residue in vivo. Our results suggest that AtTRB2 also has a role in the regulation of telomeric chromatin as a possible scaffold protein for recruiting the epigenetic regulators in Arabidopsis, in addition to its telomere binding and length regulation activity. Our data provide evidences that epigenetic molecules associate with telomeres by direct physical interaction with telomere-binding proteins and further regulate homeostasis of telomeres in Arabidopsis thaliana.  相似文献   

5.
6.
Kuchar M  Fajkus J 《FEBS letters》2004,578(3):311-315
Telomere-binding proteins are required for forming the functional structure of chromosome ends and regulating telomerase action. Although a number of candidate proteins have been identified by homology searches to plant genome databases and tested for their affinity to telomeric DNA sequences in vitro, there are minimal data relevant to their telomeric function. To address this problem, we made a collection of cDNAs of putative telomere-binding proteins of Arabidopsis thaliana to analyse their protein-protein interactions with the yeast two-hybrid system. Our results show that one myb-like protein, AtTRP1, interacts specifically with AtKu70, the latter protein having a previously described role in plant telomere metabolism. In analogy to the interaction between human Ku70 and TRF2 proteins, our results suggest that AtTRP1 is a likely homolog of TRF2. The AtTRP1 domain responsible for AtKu70 interaction occurs between amino acid sequence positions 80 and 269. The protein AtTRB1, a member of the single myb histone (Smh) family, shows self-interaction and interactions to the Smh family proteins AtTRB2 and AtTRB3. Protein AtTRB1 also interacts with AtPot1, the Arabidopsis homolog of oligonucleotide-binding-fold-containing proteins which bind G-rich telomeric DNA. In humans, the TRF1-complex recruits hPot1 to telomeres by protein-protein interactions where it is involved in telomere length regulation. Possibly, AtTRB1 has a similar role in recruiting AtPot1.  相似文献   

7.
8.
9.
Telomeres and their changes in length throughout the life span of cells have been intensively investigated in different organisms. Telomere length is assumed to control replicative senescence in mammalian cells. However, only very few data are available on the developmental dynamics of plant telomeres. Here, changes of telomere length and DNA-protein structure of Arabidopsis thaliana telomeres were analysed in different stages of development, with the main focus resting on the transition from pre-senescent to senescent leaves. The lengths of the telomeres, ranging from ca. 2.0 to 6.5 kb, do not significantly change during plant development indicating that telomere length is not involved in differentiation and replicative senescence nor in post-mitotic senescence of A. thaliana. In dedifferentiated cultured cells a slight increase in length can be determined. The nucleoprotein structure of the telomeric DNA was investigated by gel mobility shift assays, with synthetic oligonucleotides and nuclear protein extracts derived from four defined stages of post-mitotic leaf senescence. In all four stages, a highly salt-resistant DNA-protein complex was formed with the double-stranded as well as with the single-stranded G-rich telomeric DNA. An additional DNA-protein complex was identified in nuclear protein extracts isolated from plants in the transition stage from pre-senescence to senescence. The protein components of the DNA-protein complexes were analysed on native PAGE and SDS-PAGE gels. A protein of 67 kDa (ATBP1) bound to the telomeric DNA in all developmental stages. An additional protein of merely 22 kDa (ATBP2) was associated via protein-protein interaction with ATBP1 to form a higher-order complex exclusively during the onset of senescence. DNA interaction of this higher-order protein complex seems to be restricted to double-stranded telomeric DNA. The defined period of ATBP1/ATBP2 complex formation with the telomeric DNA probably indicates that ATBP2 is involved in the onset of post-mitotic leaf senescence by either disturbing an established or establishing an additional function exhibited by the telomeres in the interphase nuclei.  相似文献   

10.
11.
Mammalian telomeres are composed of long tandem arrays of double-stranded telomeric TTAGGG repeats associated with the telomeric DNA-binding proteins, TRF1 and TRF2. TRF1 and TRF2 contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In the budding yeast, telomeric DNA is associated with scRap1p, which has a central DNA-binding domain that contains two structurally related Myb domains connected by a long linker, an N-terminal BRCT domain, and a C-terminal RCT domain. Recently, the human ortholog of scRap1p (hRap1) was identified and shown to contain a BRCT domain and an RCT domain similar to scRap1p. However, hRap1 contained only one recognizable Myb motif in the center of the protein. Furthermore, while scRap1p binds telomeric DNA directly, hRap1 has no DNA-binding ability. Instead, hRap1 is tethered to telomeres by TRF2. Here, we have determined the solution structure of the Myb domain of hRap1 by NMR. It contains three helices maintained by a hydrophobic core. The architecture of the hRap1 Myb domain is very close to that of each of the Myb domains from TRF1, scRap1p and c-Myb. However, the electrostatic potential surface of the hRap1 Myb domain is distinguished from that of the other Myb domains. Each of the minimal DNA-binding domains, containing one Myb domain in TRF1 and two Myb domains in scRap1p and c-Myb, exhibits a positively charged broad surface that contacts closely the negatively charged backbone of DNA. By contrast, the hRap1 Myb domain shows no distinct positive surface, explaining its lack of DNA-binding activity. The hRap1 Myb domain may be a member of a second class of Myb motifs that lacks DNA-binding activity but may interact instead with other proteins. Other possible members of this class are the c-Myb R1 Myb domain and the Myb domains of ADA2 and Adf1. Thus, while the folds of all Myb domains resemble each other closely, the function of each Myb domain depends on the amino acid residues that are located on the surface of each protein.  相似文献   

12.
Mechanisms of interaction of DNA with nonhistone chromosomal protein HMGB1 and linker histone H1 have been studied by means of circular dichroism and absorption spectroscopy. Both proteins are located in the internucleosomal regions of chromatin. It is demonstrated that the properties of DNA-protein complexes depend on the protein content and cannot be considered as a mere summing up of the effects of individual protein components. Interaction of the HMGB1 and H1 proteins is shown with DNA to be cooperative rather than competitive. Lysine-rich histone H1 facilitates the binding of HMGB1 to DNA by screening the negatively charged groups of the sugar-phosphate backbone of DNA and dicarboxylic amino acid residues in the C-terminal domain of HMGB1. The observed joint action of HMGB1 and H1 stimulates DNA condensation with the formation of anisotropic DNA-protein complexes with typical ψ-type CD spectra. Structural organization of the complexes depends not only on DNA-protein interactions but also on interaction between the HMGB1 and H1 protein molecules bound to DNA. Manganese ions significantly modify the mode of interactions between components in the triple DNA-HMGB1-H1 complex. The binding of Mn2+ ions weakens DNA-protein interactions and strengthens protein-protein interactions, which promote DNA condensation and formation of large DNA-protein particles in solution.  相似文献   

13.
Li S  Duan J  Li D  Ma S  Ye K 《The EMBO journal》2011,30(24):5010-5020
Shq1 is a conserved protein required for the biogenesis of eukaryotic H/ACA ribonucleoproteins (RNPs), including human telomerase. We report the structure of the Shq1-specific domain alone and in complex with H/ACA RNP proteins Cbf5, Nop10 and Gar1. The Shq1-specific domain adopts a novel helical fold and primarily contacts the PUA domain and the otherwise disordered C-terminal extension (CTE) of Cbf5. The structure shows that dyskeratosis congenita mutations found in the CTE of human Cbf5 likely interfere with Shq1 binding. However, most mutations in the PUA domain are not located at the Shq1-binding surface and also have little effect on the yeast Cbf5-Shq1 interaction. Shq1 binds Cbf5 independently of the H/ACA RNP proteins Nop10, Gar1 and Nhp2 and the assembly factor Naf1, but shares an overlapping binding surface with H/ACA RNA. Shq1 point mutations that disrupt Cbf5 interaction suppress yeast growth particularly at elevated temperatures. Our results suggest that Shq1 functions as an assembly chaperone that protects the Cbf5 protein complexes from non-specific RNA binding and aggregation before assembly of H/ACA RNA.  相似文献   

14.
The mechanisms of interaction of the non-histone chromosomal protein HMGB1 and linker histone H1 with DNA have been studied using circular dichroism and absorption spectroscopy. Both of the proteins are located in the inter-nucleosomal regions of chromatin. It was demonstrated that properties of the DNA-protein complexes depend on the protein content and can not be considered as a simple summing up of the effects of individual protein components. Interaction of HMGB1 and H1 proteins is shown to be co-operative rather than competitive. Lysine-rich histone H1 facilitates the binding of the HMGB1 with DNA by screening the negatively charged groups of the sugar-phosphate backbone of DNA and dicarboxylic amino-acid residues in the C-terminal domain of the HMGB1 protein. The observed joint action of the and H1 proteins stimulates DNA condensation with formation of the anisotropic DNA-protein complexes with typical psi-type CD spectra. Structural organization of the complexes depends not only on the DNA-protein interactions, but also on the interaction between HMGB1 and H1 protein molecules bound to DNA. Manganese ions significantly modify the character of interactions between the components in the triple DNA-HMGB1-H1 complex. Binding of Mn2+ ions causes the weakening of the DNA-protein interactions and strengthening the protein-protein interactions, which promote DNA condensation and formation of large DNA-protein particles in solution.  相似文献   

15.
16.
Telomere-binding proteins have recently been recognised not only as necessary building blocks of telomere structure, but namely as components which are of central importance to telomere metabolism being involved in regulation of telomere length as well as in protective (capping) function of telomeres. Although the knowledge on plant telomeric DNA-binding proteins lags behind that in human and yeast, recent data show both analogies and plant-specific features in the composition and interactions of telomeric proteins. This review focuses primarily on proteins with known amino acid sequence. These can be classified into following groups: 1) the family of proteins with Myb domain at C-terminus, 2) proteins with Myb domain at N-terminus, both binding double-stranded DNA of telomeric repeats TTTAGGG, 3) the single-stranded DNA-binding proteins, and 4) other proteins that act also in non-telomeric chromatin regions. Proteins with C-terminal Myb domain reported as IBP family were previously found in human, whereas Smh family representing proteins with Myb domain at N-terminus was identified only in plants. Also RRM family of the single-stranded DNA-binding proteins is likely to be plant specific.  相似文献   

17.
Tom1 (Target of Myb1) is suggested to be involved in the transport of ubiquitinated proteins, through the interaction of its GAT (GGA and Tom1) domain with ubiquitin. Here, we demonstrate that the three-helix bundle of Tom1-GAT has two ubiquitin-binding sites recognizing the hydrophobic Ile44 surface of ubiquitin. The complex crystal structure demonstrates that the first site is a hydrophobic patch on helices alpha1 and alpha2. NMR and biochemical data revealed that the N-terminal half of helix alpha3 of Tom1-GAT constitutes the second, stronger binding site. The double-sided ubiquitin binding enhances the efficiency of recognition of ubiquitinated proteins by Tom1.  相似文献   

18.
Using sensitive structure similarity searches, we identify a shared alpha+beta fold, RAGNYA, principally involved in nucleic acid, nucleotide or peptide interactions in a diverse group of proteins. These include the Ribosomal proteins L3 and L1, ATP-grasp modules, the GYF domain, DNA-recombination proteins of the NinB family from caudate bacteriophages, the C-terminal DNA-interacting domain of the Y-family DNA polymerases, the uncharacterized enzyme AMMECR1, the siRNA silencing repressor of tombusviruses, tRNA Wybutosine biosynthesis enzyme Tyw3p, DNA/RNA ligases and related nucleotidyltransferases and the Enhancer of rudimentary proteins. This fold exhibits three distinct circularly permuted versions and is composed of an internal repeat of a unit with two-strands and a helix. We show that despite considerable structural diversity in the fold, its representatives show a common mode of nucleic acid or nucleotide interaction via the exposed face of the sheet. Using this information and sensitive profile-based sequence searches: (1) we predict the active site, and mode of substrate interaction of the Wybutosine biosynthesis enzyme, Tyw3p, and a potential catalytic role for AMMECR1. (2) We provide insights regarding the mode of nucleic acid interaction of the NinB proteins, and the evolution of the active site of classical ATP-grasp enzymes and DNA/RNA ligases. (3) We also present evidence for a bacterial origin of the GYF domain and propose how this version of the fold might have been utilized in peptide interactions in the context of nucleoprotein complexes.  相似文献   

19.
20.
Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号