首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of temperature on locomotor activity was determined for the sub-Antarctic mites, Halozetes fulvus Engelbrecht and Podacarus auberti Grandjean. In both species walking was severely impaired at below-freezing temperatures. Above zero, locomotor activity rates increased with a rise in temperature over a wide temperature range (for example, this was 2–30°C for H. fulvus), and they showed a biologically normal level of sensitivity to change in temperature. All the calculated Q10 values for mean rates over 5° intervals varied between 1.3 and 2.9. The present data are compared with some rate functions of maritime and continental Antarctic micro-arthropods, and they confirm the relative enhancement of the physiological rate by a continental Antarctic mite. One explanation for the less temperature-sensitive rates in H. fulvus and P. auberti may be that they have relatively more time available for normal biological activity.  相似文献   

2.
Fellfield is an important habitat in both the Antarctic and sub-Antarctic. However, few studies have examined the abundance and seasonality of arthropods in sub-Antarctic fellfield habitats. Here, soil arthropod communities were sampled for over a full year in two distinct habitat components (rocky areas and Azorella selago cushions) in a mid-altitude fellfield on Marion Island. Species richness was relatively high (42 spp.) and consisted almost exclusively of indigenous species. Maximum mean annual density in the A. selago cushions was 16,000 individuals m−2 for Eupodes minutus. In contrast, the highest density of any species in the rocky, inter-cushion areas was 700 individuals m−2 for Halozetes fulvus. Quantitative analyses highlighted prominent differences in arthropod community structure between the two habitat components, despite the fact that most species were common to both of them. In general, arthropod abundances were lower in the fellfield compared with less extreme vegetation types in the sub-Antarctic, but were not dissimilar to those found in fellfield in the maritime Antarctic. In the Marion Island fellfield, arthropods either showed no pronounced seasonal peak in abundance, or a summer peak, although these patterns differed between habitat components within species, and between species. These data provide a firm quantitative foundation for further investigations of community patterns and seasonality in sub-Antarctic fellfield arthropods. Accepted: 10 June 2000  相似文献   

3.
Three species of Antarctic mites, Alaskozetes antarcticus, Hydrogamasellus antarcticus and Rhagidia gerlachei, are abundant in the vicinity of Palmer Station, Antarctica. No single mechanism for reducing water stress was shared by all three species. A. antarcticus and R. gerlachei (both ca. 200 μg) are over twice as large as H. antarcticus (ca. 90 μg), but all had similar body water content (67%) and tolerated a loss of up to 35% of their body water before succumbing to dehydration. All imbibed free water and had the capacity to reduce water loss behaviorally by forming clusters. Alaskozetes antarcticus was distinct in that it relied heavily on water conservation (xerophilic classification) that was largely achieved by its thick cuticular armor, a feature shared by all members of this suborder (Oribatida), and abundant cuticular hydrocarbons. In comparison to the other two species, A. antarcticus was coated with 2–3× the amount of cuticular hydrocarbons, had a 20-fold reduction in net transpiration rate, and had a critical transition temperature (CTT) that indicates a pronounced suppression in activation energy (E a) at temperatures below 25°C. In contrast, H. antarcticus and R. gerlachei lack a CTT, have lower amounts of cuticular hydrocarbons and have low E as and high net transpiration rates, classifying them as hydrophilic. Only H. antarcticus was capable of utilizing water vapor to replenish its water stores, but it could do so only at relative humidities close to saturation (95–98 %RH). Thus, H. antarcticus and R. gerlachei require wet habitats and low temperature to counter water loss, and replace lost water behaviorally through predation. Compared to mites from the temperate zone, all three Antarctic species had a lower water content, a feature that commonly enhances cold tolerance.  相似文献   

4.
Microhabitat recordings suggest that the continental Antarctic mite Maudheimia petronia Wall-work experiences temperatures above 0°C for 60% of the time during summer (about 2 months). Summer daily maximum temperatures are, however, often relatively high (the highest recorded temperature was 27.7°C). Because the locomotor activity of this mite is suppressed at freezing temperatures, the time available for activity, and probably also feeding, is restricted. Temperature relations of potential locomotor activity rate suggest alleviation of this time constraint through the maximization of the rate. The locomotor activity rate of M. petronia is positively sensitive to the entire range of above-zero temperatures that it naturally experiences, being particularly accelerated at lower temperatures (Q100°–5°C values were above 13, whereas Q1025°–30°C values were below 2). Also, comparisons between mites acclimated at -15°C and 10°C suggest an inverse temperature acclimation of this rate. We hypothesize that potential feeding rate is similarly related to temperature. A relative enhancement of food intake would seem important, not only for the maintenance of a daily positive energy balance in summer, but also for the building up of energy reserves for the relatively long winter, when feeding is impossible.  相似文献   

5.
The aim of the present study was to identify food sources of bark-living oribatid mites to investigate if trophic niche differentiation contributes to the diversity of bark living Oribatida. We measured the natural variation in stable isotope ratios (15N/14N, 13C/12C) in oribatid mites from the bark of oak (Quercus robur), beech (Fagus sylvatica), spruce (Picea abies) and pine (Pinus sylvestris) trees and their potential food sources, i.e., the covering vegetation of the bark (bryophytes, lichens, algae, fungi). As a baseline for calibration the stable isotope signatures of the bark of the four tree species were measured and set to zero. Oribatid mite stable isotope ratios spanned over a range of about 13 δ units for 15N and about 7 δ units for 13C suggesting that they span over about three trophic levels. Different stable isotope signatures indicate that bark living oribatid mites feed on different food sources, i.e., occupy distinct trophic niches. After calibration stable isotope signatures of respective oribatid mite species of the four tree species were similar indicating close association of oribatid mites with the corticolous cover as food source. Overall, the results support the hypothesis that trophic niche differentiation of bark living oribatid mites contributes to the high diversity of the group.  相似文献   

6.
Seasonal changes in abundance and distribution pattern of soil micro-arthropods were studied in connection with a few environmental factors in a Japanese cedar (Cryptomeria japonica D. Don) plantation. The soil arthropods were sampled from three different depths at intervals of two months for two years. Of the collected animals (total 51000–155000 m−2), Collembola (20000–76000 m−2), oribatid mites (19000–55000 m−2) and carnivorous mites (6200–21000 m−2) were the numerically dominant animal groups. Low seasonal variations in abundance indicated their seasonal stability in population levels. The trends in seasonal fluctuation were similar among these groups and between the two years, showing bimodal pattern with little peaks in early summer and winter. The pattern of seasonal fluctuation in abundance of carnivorous mites (P d) was significantly synchronized with that in the total abundance of Collembola and oribatid mites (P τ). Thus, the number-ratios (P d/P τ) were fairly constant, ranging from 0.10 to 0.25. Seasonal changes in vertical distribution of the three animal groups showed a similar pattern for both years. The downward migrations were shown to be more affected by low temperatures in winter accompanied by snow coverage rather than by the desiccation of the surface soil in summer. All the three groups demonstrated as a whole slightly aggregated patterns of horizontal distribution throughout the two years. Temporal increases in the patchiness indices were observed from summer to autumn when the moisture content of the surface soil was low.  相似文献   

7.
We examined the effects of the presence of bird's nest ferns on the species diversity of oribatid mites in the whole forest in terms of the three categories of species diversity (α-, β-, and γ-diversity) in a subtropical forest in south-western Japan. The species diversity (1 − D) of oribatid communities in the ferns was significantly lower than those in bark of trees and the forest-floor litter and soil, and was similar to that in the branches. The oribatid faunas in the litter in and the roots of the fern were more similar to those in both the forest-floor litter and soil than to the faunas in the other arboreal habitats. However, the ferns can be colonized by endemic oribatid species specialized to such environments. The number of oribatid species estimated for a hypothetical stand with no ferns was about 180 species from 80 samples; this value did not differ significantly from that in another hypothetical stand with ferns (ca. 190 species). Thus, the species richness of oribatid communities estimated for the whole forest (the γ-diversity) was not affected by the presence or absence of bird's nest ferns. The α- and β-diversities of oribatid communities on bird's nest ferns were lower than those in other habitats, and they might not dramatically raise the overall γ-diversity of invertebrate communities in the whole forest. The bird's nest ferns, however, can generate a unique habitat for specialized species, and this would help to maintain species diversities of invertebrates at the whole-forest scale in subtropical forests.  相似文献   

8.
The community structure, stable isotope ratios (15N/14N, 13C/12C) and reproductive mode of oribatid mites (Acari, Oribatida) were investigated in four habitats (upper tree bark, lower tree bark, dry grassland soil, forest soil) at two sites in the Central Alps (Tyrol, Austria). We hypothesized that community structure and trophic position of oribatid mites of dry grassland soils and bark of trees are similar since these habitats have similar abiotic characteristics (open, dry) compared with forest soil. Further, we hypothesized that derived taxa of oribatid mites reproducing sexually dominate on the bark of trees since species in this habitat consume living resources such as lichens. In contrast to our hypothesis, the community structure of oribatid mites differed among grassland, forest and bark indicating the existence of niche differentiation in the respective oribatid mite species. In agreement with our hypothesis, sexually reproducing taxa of oribatid mites dominated on the bark of trees whereas parthenogenetic species were more frequent in soil. Several species of bark-living oribatid mites had stable isotope signatures that were similar to lichens indicating that they feed on lichens. However, nine species that frequently occurred on tree bark did not feed on lichens according to their stable isotope signatures. No oribatid mite species could be ascribed to moss feeding. We conclude that sexual reproduction served as preadaptation for oribatid mites allowing them to exploit new habitats and new resources on the bark of trees. Abiotic factors likely are of limited importance for bark-living oribatid mites since harsh abiotic conditions are assumed to favor parthenogenesis.  相似文献   

9.
Aim This study investigates the species–area relationship (SAR) for oribatid mite communities of isolated suspended soil habitats, and compares the shape and slope of the SAR with a nested data set collected over three spatial scales (core, patch and tree level). We investigate whether scale dependence is exhibited in the nested sampling design, use multivariate regression models to elucidate factors affecting richness and abundance patterns, and ask whether the community composition of oribatid mites changes in suspended soil patches of different sizes. Location Walbran Valley, Vancouver Island, Canada. Methods A total of 216 core samples were collected from 72 small, medium and large isolated suspended soil habitats in six western redcedar trees in June 2005. The relationship between oribatid species richness and habitat volume was modelled for suspended soil habitat isolates (type 3) and a nested sampling design (type 1) over multiple spatial scales. Nonlinear estimation parameterized linear, power and Weibull function regression models for both SAR designs, and these were assessed for best fit using R2 and Akaike's information criteria (ΔAIC) values. Factors affecting oribatid mite species richness and standardized abundance (number per g dry weight) were analysed by anova and linear regression models. Results Sixty‐seven species of oribatid mites were identified from 9064 adult specimens. Surface area and moisture content of suspended soils contributed to the variation in species richness, while overall oribatid mite abundance was explained by moisture and depth. A power‐law function best described the isolate SAR (S = 3.97 × A0.12, R2 = 0.247, F1,70 = 22.450, P < 0.001), although linear and Weibull functions were also valid models. Oribatid mite species richness in nested samples closely fitted a power‐law model (S = 1.96 × A0.39, R2 = 0.854, F1,18 = 2693.6, P < 0.001). The nested SAR constructed over spatial scales of core, patch and tree levels proved to be scale‐independent. Main conclusions Unique microhabitats provided by well developed suspended soil accumulations are a habitat template responsible for the diversity of canopy oribatid mites. Species–area relationships of isolate vs. nested species richness data differed in the rate of accumulation of species with increased area. We suggest that colonization history, stability of suspended soil environments, and structural habitat complexity at local and regional scales are major determinants of arboreal oribatid mite species richness.  相似文献   

10.
The mortality response of diapausing and non-diapausing twospotted spider mite (Tetranychus urticae Koch) on persimmons to hot water immersion treatments between 44 and 54 °C was examined, for potential as a quarantine treatment. The mean immersion time for mean 99% mortality (LT99) of diapausing mites at 44 °C was 211 min, and this time decreased with increasing temperature to 3.6 min at 54 °C. Non-diapausing mites were found to be less tolerant to temperatures below 48 °C, with an estimated LT99 of 102 min at 44 °C, but had similar thermotolerance above 48 °C. In 47 °C water the immersion time required to kill 99% of diapausing mites was estimated at 67 min. This time was not reduced by subsequent coolstorage at 0 °C for up to eight weeks. Rather, coolstorage had the effect of keeping mites alive, relative to LT99 estimates calculated for mites stored at 20 °C. Similarly the thermotolerance of mites did not change with increased time in diapause, even though mites in diapause for 12 weeks had high control mortality. Hot water immersion appears to be a potentially useful disinfestation method for persimmons.  相似文献   

11.
COLD TOLERANCE OF MICROARTHROPODS   总被引:7,自引:0,他引:7  
1. Microarthropods (Acari and Collembola) are dominant components of the terrestrial fauna in the Antarctic. Their cold tolerance, which forms the mainspring of their adaptational strategy, is reviewed against a background of their structure and function, and by comparison with other arthropods. 2. Two species, the isotomid collembolan Cryptopygus antarcticus Willem and the oribatid mite Alaskozetes antarcticus (Michael), are examined in detail, and afford a comparative approach to the mechanisms underlying cold tolerance in insect and arachnid types. 3. All microarthropods appear to be freezing-susceptible (unable to tolerate tissue ice), and they utilize varying levels of supercooling to avoid freezing. Gut contents are considered to be the prime nucleation site in most arthropods when supercooled, particularly for Antarctic species. Moulting also increases individual supercooling ability especially in Collembola, and the activity of ice-nucleating bacteria in cold-hardy arthropods may be important. 4. Sources of ice nucleators are many and varied, originating externally (motes) or internally (ice-nucleating agents). They act either extracellularly (mainly in the haemolymph) to promote freezing in ice-tolerant life stages, or intracellularly in freezing-susceptible forms. Thermal hysteresis proteins, acting colligatively, occur in many arthropods including Collembola; they depress both the freezing point of body fluids and the whole-body supercooling point of freezing- susceptible and freezing-tolerant species. 5. Bimodal supercooling point distributions are a feature of microarthropods and water droplets. Samples of field populations of Antarctic mites and springtails show significant seasonal changes in these distributions, which in some respects are analogous to purely physical systems of water droplets. Supercooling points are confirmed as accurate measures of cold-hardiness and survival for Antarctic species, but not necessarily for other arthropods. The effects of constant sub-zero temperatures approaching the limit of the supercooling ability of arthropods require study. 6. Desiccation and dehydration influence microarthropod physiology in several ways; in Alaskozetes it triggers glycerol synthesis. Glycerol may aid binding of water in severely dehydrated insects, but the relationship of such ‘bound’ water to cold-hardiness is unclear. 7. Sugar alcohols (polyols) and sugars are accumulated as potential cryoprotectants in many arthropods at low temperatures, and antifreeze systems may be single or multi-component in structure. Cryoprotectant synthesis and regulation have been studied principally in insects, and fresh weight concentrations of 0–3-5 M of polyols have been found. Trehalose accumulation may also influence cold-hardiness. 8. Microarthropods fall within the spectrum of cold tolerance observed for arthropods and other invertebrates. No special adaptations are found in Antarctic species, and similar strategies and mechanisms are present in both insects and arachnids. The colonization and maintenance of microarthropod populations of polar land habitats seem not to have required the evolution of any novel features with respect to cold tolerance.  相似文献   

12.
The mold mite, Tyrophagus putrescentiae (Shrank), frequently infests a variety of stored food products in ideal, but rather limited conditions. Major factors limiting survival of this mite are the temperature and humidity imposed on T. putrescentiae as it develops within and disperses among sites. However, since relative humidity is dependent upon air temperature, determining survivability in a habitat can be difficult in the presence of structural temperature variations. Vapor pressure deficit (VPD) provides a method of combining both relative humidity and temperature into a single number that can be used to determine conditions detrimental to mite survival. This study utilized a bioassay format to measure mortality of T. putrescentiae when exposed to a range of seven temperatures (5–35°C), 10 relative humidities (0–100% RH), 17 exposure times (0.5–240 h), with and without food. With these combinations of temperature and RH, mortality curves (mortality versus time) that displayed a sigmoidal relationship were used to calculate LT50 and LT90 estimates. These mortality estimates were then regressed on their associated VPD and the resulting regressions (LT50 and LT90) were significant at P < 0.0001, and provided acceptable R 2 values ≥0.83, regardless of whether food was present or not. At room temperature, threshold of VPD for T. putrescentiae development was below 8.2 mbar, this estimate being initially calculated from published values. For mites exposed to drier conditions, above 8.2 mbar, survival time was curtailed dependant on the magnitude of VPD. As the VPD exceeded 12 mbar, mites experienced substantial (>90%) mortality within 58 (33, 101) h; and further increasing VPD decreased the time of exposure to achieve mortality. This study demonstrates that making subtle changes in humidity or temperature to reach a target VPD may provide control of mite outbreaks and reduce areas inhabitable for T. putrescentiae. With the recent revision of the genus Tyrophagus (Fan and Zhang 2007), T. putrescentiae was split and the commonly encountered peridomestic mite was renamed T. communis. Voucher specimens of the species we used were identified as T. communis (B. OConnor, pers. comm.). However, there are current discussions as to which species name will be applied to the more common mite species (P. Klimov, pers. comm.). For the purposes of this paper we will continue to use T. putrescentiae.  相似文献   

13.
Little is known about how adults of the corn leafhopper,Dalbulus maidis (DeLong & Wolcott), and its congeners survive subfreezing temperatures at high elevations during the dry winter in Mexico. In the laboratory, duration of survival at −5°C was measured for four MexicanDalbulus species:D. maidis, D. elimatus (Ball),D. gelbus DeLong andD. quinquenotatus DeLong & Nault; and a closely related North American species,Baldulus tripsaci Kramer & Whitcomb. Adult leafhoppers reared under environmental conditions that simulated the beginning of the dry winter season during October in Mexico (‘October-reared’) were at least twice as tolerant of −5°C than adults reared under environmental conditions that simulated the beginning of the wet summer season during June (‘June-reared’).Dalbulus species found primarily at high elevations, such asD. elimatus, were seven times more tolerant of −5°C thanD. quinquenotatus, a species which overwinters at low to mid elevations on itsTripsacum hosts. October-rearedD. maidis adults survived relatively short periods at −5°C (LT50=8.9h) compared to October-rearedD. elimatus adults (LT50=42.3h). This suggests that in Mexico,D. maidis either overwinters in protected habitats at higher elevations or it migrates to lower, frost-free regions. October-rearedB. tripsaci adults, which overwinter in the egg stage, were intolerant of −5°C (LT50=2.6h). A conditioning period for 1 h at +5°C before and after exposure to −5°C significantly improved survival forD. maidis. Supercooling points (SCPs) were between −23 and −20°C, indicating that mortality of these leafhoppers at −5°C was due to cold shock injury rather than internal ice formation.  相似文献   

14.
Adult oribatid mites are thought to live functionally in ‘enemy-free space’ due to numerous morphological and chemical defensive strategies. Most juvenile oribatid mites, however, lack hardened cuticles and are thus thought to be under stronger predation pressure. On the other hand, the majority of oribatids have exocrine oil glands in all developmental stages, possibly rendering chemical defense the crucial survival strategy in juvenile Oribatida. We manipulated tritonymphs of the model oribatid mite Archegozetes longisetosus to completely discharge their oil glands and offered these chemically disarmed specimens to the polyphagous rove beetle Stenus juno. Disarmed specimens were easily consumed. By contrast, specimens with filled oil glands were significantly protected, being rejected by the beetles. This is the first direct evidence that oil gland secretions provide soft-bodied juvenile oribatids with chemical protection against large arthropod predators.  相似文献   

15.

Oribatid mites are tiny arthropods that are common in all soils of the world; however, they also occur in microhabitats above the soil such as lichens, mosses, on the bark of trees and in suspended soils. For understanding oribatid mite community structure, it is important to know whether they are dispersal limited. The aim of this study was to investigate the importance of oribatid mite dispersal using Malaise traps to exclude sole passive wind-dispersal. Oribatid mite communities were collected over a 3-year period from five habitat types (coniferous forests, deciduous forests, mixed forests, meadows, bog/heathlands sites) and three seasons (spring, summer, autumn) in Sweden. Mites entered traps either by walking or by phoresy, i.e., by being attached to flying insects. We hypothesized (1) that oribatid mite communities in the traps differ between habitats, indicating habitat-limited dispersal, and (2) that oribatid mite communities differ among seasons suggesting that dispersal varies due to changing environmental conditions such as moisture or resource availability. The majority of the collected species were not typically soil-living species but rather from habitats such as trees, lichens and mosses (e.g., Carabodes labyrinthicus, Cymbaeremaeus cymba, Diapterobates humeralis and Phauloppia lucorum) indicating that walking into the traps or entering them via phoresy are of greater importance for aboveground than for soil-living species. Overall, oribatid mite communities collected in the traps likely originated from the surrounding local habitat suggesting that long distance dispersal of oribatid mites is scarce. Significant differences among seasons indicate higher dispersal during warm and dry periods of the year. Notably, 16 species of oribatid mites collected in our study were sampled for the first time in Sweden. This study also demonstrates that Malaise traps are a meaningful tool to investigate spatial and temporal patterns of oribatid mite communities.

  相似文献   

16.
Maturation to adulthood and successful reproduction in the Antarctic fairy shrimp, Branchinecta gaini, must be completed within a physiologically challenging temporal window of ca. 2.5 months in the southern Antarctic Peninsula. Although adults show considerable metabolic opportunism at positive temperatures, little is known of their tolerance of two physiological insults potentially typical to pool life in the maritime Antarctic: sub-zero temperatures and salinity. B. gaini are freeze-avoiding crustaceans with temperatures of crystallisation (T cs) of −5°C. No antifreeze proteins were detected in the haemolymph. Adults osmoregulate in relation to temperature, but rapid mortality in saline solutions of even low concentration, indicate they cannot osmoregulate in relation to salinity. Survival of ice encasement at temperatures above their T c was found to be pressure but not time dependent: at severe inoculative ice pressures, there was little immediate survival and none survived after 48 h below −2°C; at mild inoculative ice pressures, immediate survival was ca. 100% at −3°C, but <20% after 48 h. There was no significant difference in survival after 1 and 6 h encasement at −3°C. Observations of ventilation suggest that it is not low temperature per se, but ice that represents the primary cryo-stress, with ventilatory appendages physically handcuffed below the freezing point of pool water. Both sub-zero temperatures and salinity represent real physiological constraints on adult fairy shrimp.  相似文献   

17.
Low-temperature (LT) tolerance is an important economic trait in winter wheat (Triticum aestivum L.) that determines the plants’ ability to cope with below freezing temperatures. Essential elements of the LT tolerance mechanism are associated with the winter growth habit controlled by the vernalization loci (Vrn-1) on the group 5 chromosomes. To identify genomic regions, which in addition to vrn-1 determine the level of LT tolerance in hexaploid wheat, two doubled haploid (DH) mapping populations were produced using parents with winter growth habit (vrn-A1, vrn-B1, and vrn-D1) but showing different LT tolerance levels. A total of 107 DH lines were analyzed by genetic mapping to produce a consensus map of 2,873 cM. The LT tolerance levels for the Norstar (LT50=−20.7°C) × Winter Manitou (LT50=−14.3°C) mapping population ranged from −12.0 to −22.0°C. Single marker analysis and interval mapping of phenotyped lines revealed a major quantitative trait locus (QTL) on chromosome 5A and a weaker QTL on chromosome 1D. The 5A QTL located 46 cM proximal to the vrn-A1 locus explained 40% of the LT tolerance variance. Two C-repeat Binding Factor (CBF) genes expressed during cold acclimation in Norstar were located at the peak of the 5A QTL.  相似文献   

18.
Water loss through inflorescences may place extreme demands on plant water status in arid environments. Here we examine how corolla size, a trait known to influence pollination success, affects the water cost of flowering in the alpine skypilot, Polemonium viscosum. In a potometry experiment, water uptake rates of inflorescences were monitored during bud expansion and anthesis. Corolla volume of fully expanded flowers predicted water uptake during bud expansion (R 2=0.61, P=0.0375) and corolla surface area predicted water uptake during anthesis (R 2=0.59, P=0.044). To probe mechanisms underlying the relationship between corolla size and water uptake, cell dimensions and densities were measured in several regions of fully expanded corollas. Corolla length was positively correlated with cell length in the middle of the corolla tube and cell diameter in the corolla lobe (Pearson's r from 0.26–0.33, n=86, P ≤ 0.05). Cell density was negatively correlated with cell dimensions in the upper corolla tube and lobe (Pearson's r from –0.39 to –0.42, P ≤ 0.0015). These findings suggest that more water may be required to maintain turgor in large corollas in part because their tissues have lower cell wall densities. The carbon cost of water use by flowers was assessed in krummholz and tundra habitats for P. viscosum flowering, respectively, during dry and wet portions of the growing season. For plants in full flower, average leaf water potentials were significantly more negative (P=0.0079) at mid-day in the krummholz (June) than in the tundra (July), but were similar before dawn (P=0.631). Photosynthetic rate at the time of flowering declined significantly with increasing corolla size in the krummholz (P=0.0376), but was unrelated to corolla size on the tundra (P>0.72). Plants losing water through large corollas may close leaf stomata to maintain turgor. If photosynthesis limits growth in this perennial species, then the water cost of producing large flowers should exacerbate the cost of reproduction under dry conditions. Such factors could select for flowers with smaller corollas in the krummholz, countering pollinator-mediated selection and helping maintain genetic variation in corolla size components of P. viscosum. Received: 5 May 1998 / Accepted: 2 October 1998  相似文献   

19.
 First-strand cDNA was prepared from mRNA of Aspergillus niger MRC11624 induced on oat spelts xylan. Using the cDNA as a template, the α-L-arabinofuranosidase gene (abf B) was amplified with the polymerase chain reaction technique. The abf B DNA fragment was inserted between the yeast phosphoglycerate kinase I gene promoter (PGK1 P ) and terminator (PGK1 T ) sequences on a multicopy episomal plasmid. The resulting construct PGK1 P -abf B-PGK1 T was designated ABF2. The ABF2 gene was expressed successfully in Saccharomyces cerevisiae and functional α-L-arabinofuranosidase was secreted from the yeast cells. The ABF2 nucleotide sequence was determined and verified to encode a 449-amino-acid protein (Abf 2) that is 94% identical to the α-L-arabinofuranosidase B of A. niger N400. Maximum α-L-arabinofuranosidase activities of 0.020 U/ml and 1.40 U/ml were obtained with autoselective recombinant S. cerevisiae strains when grown for 48 h in synthetic and complex medium respectively. Received: 29 January 1996/Received revision: 3 May 1996/Accepted: 9 May 1996  相似文献   

20.
Seventeen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin were evaluated for their pathogenicity against the tobacco spider mite, Tetranychus evansi Baker & Pritchard. In the laboratory all the fungal isolates were pathogenic to the adult female mites, causing mortality between 22.1 and 82.6%. Isolates causing more than 70% mortality were subjected to dose–response mortality bioassays. The lethal concentration causing 50% mortality (LC50) values ranged between 0.7×107 and 2.5×107 conidia ml−1. The lethal time to 50% mortality (LT50) values of the most active isolates of B. bassiana and M. anisopliae strains varied between 4.6 and 5.8 days. Potted tomato plants were artificially infested with T. evansi and treated with B. bassiana isolate GPK and M. anisopliae isolate ICIPE78. Both fungal isolates reduced the population density of mites as compared to untreated controls. However, conidia formulated in oil outperformed the ones formulated in water. This study demonstrates the prospects of pathogenic fungi for the management of T. evansi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号