首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report electron paramagnetic resonance (EPR) studies on photosystem II (PSII) from higher plants in five different domains of the thylakoid membrane prepared by sonication and two-phase partitioning. The domains studied were the grana core, the entire grana stack, the grana margins, the stroma lamellae and the purified stromal fraction, Y100. The electron transport properties of both donor and acceptor sides of PSII such as oxygen evolution, cofactors Y D, Q A, the CaMn 4-cluster, and Cytb 559 were investigated. The PSII content was estimated on the basis of oxidized Y D and Q A (-) Fe (2+) signal from the acceptor side vs Chl content (100% in the grana core fraction). It was found to be about 82% in the grana, 59% in the margins, 35% in the stroma and 15% in the Y100 fraction. The most active PSII centers were found in the granal fractions as was estimated from the rates of electron transfer and the S 2 state multiline EPR signal. In the margin and stroma fractions the multiline signal was smaller (40 and 33%, respectively). The S 2 state multiline could not be induced in the Y100 fraction. In addition, the oxidized LP Cytb 559 prevailed in the stromal fractions while the HP form dominated in the grana core. The margins and entire grana fractions have Cytb 559 in both potential forms. These data together with previous analyses indicate that the sequence of activation of the PSII properties can be represented as: PSII content > oxygen evolution > reduced Cytb 559 > dimerization of PSII centers in all fractions of the thylakoid membrane with the gradual increase from stromal fractions via margin to the grana core fraction. The results further support the existence of a PSII activity gradient which reflects lateral movement and photoactivation of PSII centers in the thylakoid membrane. The possible role of the PSII redox components in this process is discussed.  相似文献   

2.
Ravi Danielsson 《BBA》2004,1608(1):53-61
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700+ and YD, respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIβ) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIα) 300, PSI (PSIβ) in stroma lamellae 214, PSII in grana core (PSIIα) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

3.
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700(+) and Y(D)( .-), respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIbeta) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIalpha) 300, PSI (PSIbeta) in stroma lamellae 214, PSII in grana core (PSIIalpha) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

4.
6-Azido-5-decyl-2,3-dimethoxy-p-benzoquinone (6-azido-Q0C10) was found to replace the native plastoquinone at B (the second stable electron acceptor to Photosystem II (PS II)). The 6-azido-Q10C10 would accept electrons from the primary electron-accepting quinone, Q, thus allowing electron transport through PS II to the plastoquinone pool in thylakoids. The synthetic azidoquinone also competes with the PS II herbicides ioxynil and atrazine for binding. This observation strongly favors the hypothesis that PS II herbicides block electron transport by replacing the native quinone which acts as the second electron carrier on the reducing side of PS II (termed B). Covalent linkage of 6-azido-Q0C10 to its binding environment by ultraviolet irradiation greatly reduces herbicide-binding affinity but does not lead to a loss in herbicide-binding sites. We take this as evidence that covalent attachment of 6-azido-Q0C10 allows some freedom of quinone head-group movement such that the herbicides can enter the binding site. This indicates that the protein determinants which regulate quinone and herbicide binding are very closely related, but not identical. A compound somewhat related to 6-azido-Q0C10 is 2-azido-3-methoxy-5-geranyl-6-methyl-p-benzoquinone (2-azido-Q2). This compound was found to be an ineffective competitor with respect to herbicide binding. Thus, interactions with protein-binding determinants are highly dependent on the molecular structure of quinones. The 2-azido-Q2 was an inhibitor of electron flow in the intersystem portion of the chain.  相似文献   

5.
We have used antibodies generated against synthetic peptides to determine the topology of the 43 kD chlorophyll a binding protein (CP 43) of Photosystem II. Based on the pattern of proteolytic fragments detected (on western blots) by peptide specific antibodies, a six transmembrane span topological model, with the amino and carboxyl termini located on the stromal membrane surface, is predicted. This structure is similar to that predicted for CP 47, a PS II chlorophyll a binding protein (Bricker T (1990) Photosynth Res 24: 1–13). The model is discussed in reference to the possible location of chlorophyll binding sites.This work was supported by National Institutes of Health Research Grant, GM40703 and U.S. Department of Energy Grant, DE-FG01-92ER20076 (to R.T.S.).  相似文献   

6.
Abstract In a previous study we found that the 33 kDa extrinsic polypeptide of Photosystem II is present in both the cytoplasmic and thylakoid membranes of cyanobacteria, but forms part of a functional complex only in the latter [Smith et al. (1987) Mol. Microbiol. 6, 1821–1827]. In order to determine if this phenomenon is restricted to the 33 kDa polypeptide we have extended this study in Anacystis nidulans to include a number of other polypeptides of Photosystem I and Photosystem II. We have found that D1 and possibly PsaC are present in both membranes, CP43 and CP47 are confined to the thylakoid membranes, and the distribution of PsaD and PsaE is dependent upon the growth stage of the cyanobacteria.  相似文献   

7.
The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.  相似文献   

8.
The efficiency of oxidized endogenous plastoquinone-9 (PQ-9) as a non-photochemical quencher of chlorophyll fluorescence has been analyzed in spinach thylakoids and PS II membrane fragments isolated by Triton X-100 fractionation of grana stacks. The following results were obtained: (a) After subjection of PS II membrane fragments to ultrasonic treatment in the presence of PQ-9, the area over the induction curve of chlorophyll fluorescence owing to actinic cw light increases linearly with the PQ-9/PS II ratio in the reconstitution assay medium; (b) the difference of the maximum fluorescence levels, Fmax, of the induction curves, measured in the absence and presence of DCMU, is much more pronounced in PS II membrane fragments than in thylakoids; (c) the ratio Fmax(-DCMU)/Fmax(+DCMU) increases linearly with the content of oxidized PQ-9 that is varied in the thylakoids by reoxidation of the pool after preillumination and in PS II membrane fragments by the PQ-9/PS II ratio in the reconstitution assay; (d) the reconstitution procedure leads to tight binding of PQ-9 to PS II membrane fragments, and PQ-9 cannot be replaced by other quinones; (e) the fluorescence quenching by oxidized PQ-9 persists at low temperatures, and (f) oxidized PQ-9 preferentially affects the F695 of the fluorescence emission spectrum at 77 K. Based on the results of this study the oxidized PQ-9 is inferred to act as a non-photochemical quencher via a static mechanism. Possible implications for the nature of the quenching complex are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The present study describes the formation of different forms of peroxide in Photosystem II (PS II) by using a chemiluminescence detection technique. Four chemiluminescence signals (A, B, C and D) of the luminolperoxidase (Lu-Per) system, which detects peroxide, are found in illuminated O2-evolving Photosystem II (PS II) membrane fragments isolated from spinach. Signal A (free peroxide) peaking around 0.2–0.3 s after mixing PS II membrane fragments with Lu-Per is eliminated by catalase or removal of oxygen from the suspension and ascribed to O2 interaction with reduced PS II electron acceptors. In contrast, signal B peaking around 1.5 min remains largely unaffected under anaerobic conditions, as well as in the presence of catalase (20 g/ml). Under flash illumination the extent of this signal exhibits a weak period four oscillation (maximum at third and 7th flash). Its yield increases up to the third flash, but is close to zero in the fourth flash. An analogous behaviour is observed in flashes 5 to 8. Signal B is ascribed to Lu-Per interaction with the water-oxidizing system being in S2 and/or S3-state. Signal C (bound peroxide) detected as free peroxide after acid decomposition of illuminated PS II particles is observed on the 1 st flash and oscillates with period 2 with superposition of period 4. It is evidently related to peroxide either released from S2 or formed at S2 upon acid shock treatment. Signal D (slowly released peroxide) peaking around 2–3 s after mixing is observed in samples after various treatments (LCC-incubation, washing with 1 M NaCl at pH 8 or with 1 M CaCl2, Cl--depletion) that lead to at least partial removal of the extrinsic proteins of 18, 24 and 33 kDa without Mn extraction. The average amplitude of this signal corresponds with a yield of about 0.2 H2O2 molecules per RC and flash. In a flash train, the extent of signal D exhibits an oscillation pattern with a minimum at the 3rd flash. We assume that these treatments increase the release of bound peroxide (upon injection into the Lu-Per assay) either formed in the normal oxidative pathway of the water oxidase in the S2 or the S3-state or give rise to peroxide formation due to higher accessibility of the Mn-cluster to water molecules.Abbreviations DCPIP 2,6-dichlorophenolindophenol - DPC diphenylcarbazide - LCC lauroylcholine chloride - Lu-Per luminol peroxidase - PS II Photosystem II - RC reaction center - S2, S3 redox states of the water oxidizing system - TEMED-N,N,N,N tetramethylethylenediamine  相似文献   

10.
Pulse-labeling of wild-type and a Photosystem II mutant strain of Chlamydomonas reinhardtii was carried out in the presence or absence of inhibitors of either cytoplasmic or chloroplast ribosomes, and their thylakoid membrane polypeptides were analyzed by polyacrylamide gel electrophoresis. A pulse-chase study was also done on the wild-type strain in the presence of anisomycin, an inhibitor of protein synthesis on cytoplasmic ribosomes. The following results were obtained: the Photosystem II reaction center is mainly composed of integral membrane proteins synthesized within the chloroplast. Several of the proteins of the Photosystem II reaction center are post-translationally modified, after they have been inserted in the thylakoid membrane.  相似文献   

11.
R. A. Chylla  G. Garab  J. Whitmarsh 《BBA》1987,894(3):562-571
We used two different techniques to measure the recovery time of Photosystem II following the transfer of a single electron from P-680 to QA in thylakoid membranes isolated from spinach. Electron transfer in Photosystem II reaction centers was probed first by spectroscopic measurements of the electrochromic shift at 518 nm due to charge separation within the reaction centers. Using two short actinic flashes separated by a variable time interval we determined the time required after the first flash for the electrochromic shift at 518 nm to recover to the full extent on the second flash. In the second technique the redox state of QA at variable times after a saturating flash was monitored by measurement of the fluorescence induction in the absence of an inhibitor and in the presence of ferricyanide. The objective was to determine the time required after the actinic flash for the fluorescence induction to recover to the value observed after a 60 s dark period. Measurements were done under conditions in which (1) the electron donor for Photosystem II was water and the acceptor was the endogenous plastoquinone pool, and (2) Q400, the Fe2+ near QA, remained reduced and therefore was not a participant in the flash-induced electron-transfer reactions. The electrochromic shift at 518 nm and the fluorescence induction revealed a prominent biphasic recovery time for Photosystem II reaction centers. The majority of the Photosystem II reaction centers recovered in less than 50 ms. However, approx. one-third of the Photosystem II reaction centers required a half-time of 2–3 s to recover. Our interpretation of these data is that Photosystem II reaction centers consist of at least two distinct populations. One population, typically 68% of the total amount of Photosystem II as determined by the electrochromic shift, has a steady-state turnover rate for the electron-transfer reaction from water to the plastoquinone pool of approx. 250 e / s, sufficiently rapid to account for measured rates of steady-state electron transport. The other population, typically 32%, has a turnover rate of approx. 0.2 e / s. Since this turnover rate is over 1000-times slower than normally active Photosystem II complexes, we conclude that the slowly turning over Photosystem II complexes are inconsequential in contributing to energy transduction. The slowly turning over Photosystem II complexes are able to transfer an electron from P-680 to QA rapidly, but the reoxidation of QA is slow (t1/2 = 2 s). The fluorescence induction measurements lead us to conclude that there is significant overlap between the slowly turning over fraction of Photosystem II complexes and PS IIβ reaction centers. One corollary of this conclusion is that electron transfer from P-680 to QA in PS IIβ reaction centers results in charge separation across the membrane and gives rise to an electrochromic shift.  相似文献   

12.
The effect of ultraviolet-B (UV-B) radiation on the amount of various Photosystem (PS) II subunits has been studied in the thalloid liverwort Conocephalum conicum. UV-B irradiation led to a drastic decrease of the reaction center proteins D1 and D2 and the outer light harvesting antenna (LHC II). A minor reduction was found in the levels of the CP 43 polypeptide of the inner antenna and the 33, 23 and 16 kDa extrinsic polypeptides of PS II. During UV-B irradiation, the extrinsic polypeptides accumulated in the soluble protein fraction, but D1 and D2 were not dedectable. Streptomycin, but not cycloheximide inhibited the repair process of PS II, indicating that only protein synthesis in the chloroplast is necessary for recovery. This indicates that the extrinsic proteins of PS II dissociate from the membrane during UV-B treatment and reassociate with PS II in the course of the repair process. We conclude that the reaction center core is a target of UV-B radiation in C. concicum. The extrinsic proteins of PS II are not directly affected by UV-B, but their release is the consequence of UV-B-induced degradation of the D1 and D2 proteins.  相似文献   

13.
A structure of photosystem II recently determined by X-ray crystallography at 3.8 A resolution complements structural studies using high-resolution electron microscopy and represents a major step towards understanding how photosynthetic organisms use light energy to oxidise water.  相似文献   

14.
In plants, the stacking of part of the photosynthetic thylakoid membrane generates two main subcompartments: the stacked grana core and unstacked stroma lamellae. However, a third distinct domain, the grana margin, has been postulated but its structural and functional identity remains elusive. Here, an optimized thylakoid fragmentation procedure combined with detailed ultrastructural, biochemical, and functional analyses reveals the distinct composition of grana margins. It is enriched with lipids, cytochrome b6f complex, and ATPase while depleted in photosystems and light‐harvesting complexes. A quantitative method is introduced that is based on Blue Native Polyacrylamide Gel Electrophoresis (BN‐PAGE) and dot immunoblotting for quantifying various photosystem II (PSII) assembly forms in different thylakoid subcompartments. The results indicate that the grana margin functions as a degradation and disassembly zone for photodamaged PSII. In contrast, the stacked grana core region contains fully assembled and functional PSII holocomplexes. The stroma lamellae, finally, contain monomeric PSII as well as a significant fraction of dimeric holocomplexes that identify this membrane area as the PSII repair zone. This structural organization and the heterogeneous PSII distribution support the idea that the stacking of thylakoid membranes leads to a division of labor that establishes distinct membrane areas with specific functions.  相似文献   

15.
The polypeptide composition and membrane structure of a variegated mutant of tobacco have been investigated. The pale green mutant leaf regions contain chloroplasts in which the amount of membrane stacking has been reduced (although not totally eliminated). The mutant membranes are almost totally deficient in Photosystem II when compared to wild-type chloroplast membranes, but still show near-normal levels of Photosystem I activity. The pattern of membrane polypeptides separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows several differences between mutant and wild-type membranes, although the major chlorophyll-protein complexes described in many other plant species are present in both mutant and wild-type samples. Freeze-fracture analysis of the internal structure of these photosynthetic membranes shows that the Photosystem II-deficient membranes lack the characteristic large particle associated with the E fracture face of the thylakoid. These membranes also lack a tetramer-like particle visible on the inner (ES) surface of the membrane. The other characteristics of the photosynthetic membrane, including the small particles observed on the P fracture faces in both stacked and unstacked regions, and the characteristic changes in the background matrix of the E fracture face which accompany thylakoid stacking, are unaltered in the mutant. From these and other observations we conclude that the large (EF and ES) particle represents an amalgam of many components comprising the Photosystem II reaction complex, that the absence of one or more of its components may prevent the structure from assembling, and that in its absence, Photosystem II activity cannot be observed.  相似文献   

16.
D. J. Kyle  P. Haworth  C. J. Arntzen 《BBA》1982,680(3):336-342
The room-temperature fluorescence induction transients from stroma-free chloroplast membranes (in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea) have been analyzed to determine the effects of membrane protein phosphorylation on the connectivity between Photosystem (PS) II centers. Chloroplast membranes which have been incubated in the light with ATP exhibit: (1) a decrease in the variable fluorescence as a function of the initial fluorescence, (2) a shift from a sigmoidal to an exponential fluorescence induction curve, and (3) a reduced amount of the fast () component of the induction transient. These phenomenona are completely reversible by dark incubation of the samples (leading to protein dephosphorylation). We conclude that connectivity between PS II centers is reduced as a function of thylakoid membrane protein phosphorylation. This may in turn be the mechanism which increases the amount of absorbed excitation energy available to PS I.  相似文献   

17.
Upon illumination, a dark-adapted photosynthetic sample shows time-dependent changes in chlorophyll (Chl) a fluorescence yield, known as the Kautsky phenomenon or the OIDPS transient. Based on the differential effects of electron acceptors such as 2,5-dimethyl-p-benzoquinone (DMQ) and 2,6-dichloro-p-benzoquinone (DCBQ) on Chl a fluorescence transients of spinach thylakoids, we suggest that the OID phase reflects the reduction of the electron acceptor QA to QA- in the inactive PS II (see Graan, T. and Ort, D. (1986) Diochim. Biophys. Acta 852, 320-330). In spinach thylakoids, heat-induced increase of the Chl a fluorescence yield is also differentially sensitive to the addition of DMQ and DCBQ suggesting that this increase is mainly on the 'I' level, and thus heating is suggested to convert active PS II to inactive PS II centers. The kinetics of decay of QA-, calculated from variable Chl a fluorescence, was analyzed into three exponential components (365-395 microseconds; 6-7 ms; and 1.4-1.7 s). In heated samples, the decay rate of variable Chl a fluorescence is slower than the normal back-reaction rate; there is a preponderance of the slow component that may be due, partly, to the active centers undergoing slow back reaction between QA- and the S2 state of the oxygen-evolving complex.  相似文献   

18.
G. Renger  B. Hanssum  H. Gleiter  H. Koike  Y. Inoue 《BBA》1988,936(3):435-446
The interaction of exogenous quinones with the Photosystem II (PS II) acceptor side has been analyzed by measurements of flash-induced 320 nm absorption changes, transient flash-induced variable fluorescence changes, thermoluminescence emission and oxygen yield in dark-adapted thylakoids and PS II membrane fragments. Two classes of 1,4-benzoquinones were shown to give rise to remarkably different reaction patterns. (A) Phenyl-p-benzoquinone (Ph-p-BQ) -type compounds give rise to a marked binary oscillation of the initial amplitudes of 320 nm absorption changes induced by a flash train in dark-adapted PS II membrane fragments and a retardation of the decay kinetics of the flash-induced variable fluorescence. The electron transfer reactions to these type of quinones are severely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). (B) In the presence of tribromotoluquinone (TBTQ) a different oscillation pattern of the 320 nm absorption changes is observed characterized by a marked relaxation after the first flash in the 5 ms domain. This relaxation is insensitive to 10 μM DCMU. Likewise the decay of the flash-induced variable fluorescence in TBTQ-treated samples is much less sensitive to DCMU than in control. The thermoluminescence emission exhibits an oscillation in samples incubated for 5 min with TBTQ before addition of 30 μM DCMU. Under the same conditions a significant flash-induced oxygen evolution is observed only after the third and fourth flash, respectively, whereas in the presence of TBTQ alone a normal oscillation pattern is observed. The different functional patterns of PS II caused by the two types of classes of exogenous quinones are interpreted by their binding properties: a noncovalent association with the QB-site of Ph-p-BQ-type quinones versus a tight (covalent?) binding in the vicinity of QA (possibly also at the QB-site) in the case of halogenated 1,4-benzoquinones. The mechanistic implications of these findings are discussed.  相似文献   

19.
We studied the aggregation state of Photosystem II in stacked and unstacked thylakoid membranes from spinach after a quick and mild solubilization with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by analysis by diode-array-assisted gel filtration chromatography and electron microscopy. The results suggest that Photosystem II (PS II) isolates either as a paired, appressed membrane fragment or as a dimeric PS II-LHC II supercomplex upon mild solubilization of stacked thylakoid membranes or PS II grana membranes, but predominantly as a core monomer upon mild solubilization of unstacked thylakoid membranes. Analysis of paired grana membrane fragments reveals that the number of PS II dimers is strongly reduced in single membranes at the margins of the grana membrane fragments. We suggest that unstacking of thylakoid membranes results in a spontaneous disintegration of the PS II-LHC II supercomplexes into separated PS II core monomers and peripheral light-harvesting complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
W.L. Butler  M. Kitajima 《BBA》1975,396(1):72-85
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at ?196 °C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5 mM MgCl2 which presumably changes the distribution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, α, being the fraction distributed to Photosystem I, and β, the fraction to Photosystem II, and a term for the rate constant for energy transfer from Photosystem II to Photosystem I,kT(II→I). The data, analyzed within the context of the model, permit a direct comparison of α andkT(II→I) in the absence (?) and presence (+) of Mg2+:α/?α+= 1.2andk/?T(II→I)k+T(II→I)= 1.9. If the criterion thatα + β = 1 is applied absolute values can be calculated: in the presence of Mg2+,a+ = 0.27 and the yield of energy transfer,φ+T(II→I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg2+? = 0.32 andφT(II→I) varied from 0.12 to 0.28.The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvseting chlorophyll of Photosystem II to Photosystem I,kT(II→I), and a transfer from the reaction centers of Photosystem II to Photosystem I,kt(II→I). In that caseα/?α+= 1.3,k/?T(II→I)k+T(II→I)= 1.3 andk/?t(II→I)k+(tII→I)= 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号