首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
An extracellular phenolic acid esterase produced by the fungus Penicillium expansum in solid state culture released ferulic and ρ-coumaric acid from methyl esters of theacids, and from the phenolic-carbohydrate esters O-[5-O-(trans-feruloyl)-α- l -arabinofuranosyl]-(1 → 3)-O-β- d -xylopyranosyl-(1 → 4)- d -xylopyranose (FAXX) and O-[5-O-((E)-ρ-coumaroyl)-α- l -arabinofuranosyl]-(1 → 3)-O-β- d -xylopyranosyl-(1 → 4)- d -xylopyranose(PAXX). The esterase was purified 360-fold in successive stepsinvolving ultrafiltration and column chromatography by gel filtration, anion exchange andhydrophobic interaction. These chromatographic methods separated the phenolic acid esterasefrom α- l -arabinofuranosidase, pectate and pectin lyase, polygalacturonase,xylanase and β- d -xylosidase activities. The phenolic acid esterase had an apparentmass of 65 kDa under non-denaturing conditions and a mass of 57·5 kDa underdenaturing conditions. Optimal pH and temperature were 5·6 and 37 °C,respectively and the metal ions Cu2+ and Fe3+ atconcentrations of 5 mmol l−1 inhibited feruloyl esterase activity by 95% and44%, respectively, at the optimum pH and temperature. The apparent Km and Vmax of the purified feruloyl esterase for methyl ferulate at pH 5·6 and 37 °Cwere 2·6 mmol l−1 and 27·1 μmol min−1 mg−1. The corresponding constants of ρ-coumaroylesterase for methyl coumarate were 2·9 mmol l−1 and 18·6μmol min−1 mg−1.  相似文献   

2.
Feruloyl esterases act as accessory enzymes for the complete saccharification of plant cell wall hemicelluloses. Although many fungal feruloyl esterases have been purified and characterized, few bacterial phenolic acid esterases have been characterized. This study shows the extracellular production of a feruloyl esterase by the thermophilic anaerobe Clostridium stercorarium when grown on birchwood xylan. The feruloyl esterase was purified 500-fold in successive steps involving ultrafiltration, preparative isoelectric focusing and column chromatography by anion exchange, gel filtration and hydrophobic interaction. The purified enzyme released ferulic, rho-coumaric, caffeic and sinapinic acid from the respective methyl esters. The purified enzyme also released ferulic acid from a de-starched wheat bran preparation. At pH 8.0 and 65 degrees C, the Km and Vmax values for the hydrolysis of methyl ferulate were 0.04 mmol l-l and 131 micromol min-1 mg-1, respectively; the respective values for methyl coumarate were 0.86 mmol l-l and 18 micromol min-1 mg-1. The purified feruloyl esterase had an apparent mass of 33 kDa under denaturing conditions and showed optimum activity at pH 8.0 and 65 degrees C. At a concentration of 5 mmol l-l, the ions Ca2+, Cu2+, Co2+ and Mn2+ reduced the activity by 70-80%.  相似文献   

3.
G W Chen  C F Hung  S H Chang  J G Lin  J G Chung 《Microbios》1999,98(391):159-174
N-acetyltransferase from Lactobacillus acidophilus was purified by ultrafiltration, DEAE-Sephacel, gel filtration chromatography on Sephadex G-100, and DEAE-5pw on high performance liquid chromatography, as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% (w/v) slab gel. The purified enzyme was thermostable at 37 degrees C for 1 h with a half-life of 32 min at 37 degrees C, and displayed optimum activity at 37 degrees C and pH 7.0. The K(m) and Vmax values for 2-aminofluorene were 0.842 mM and 2.406 nmol/min/mg protein, respectively. Among a series of divalent cations and salts, Zn2+, Ca2+, Fe2+, Mg2+, and Cu2+ were demonstrated to be the most potent inhibitors. The enzyme had a molecular mass of 44.9 kD. The three chemical modification agents, iodoacetamide, phenylglyoxal, and diethylpyrocarbonate, all exhibited dose-, time-, and temperature-dependent inhibition effects. Preincubation of purified N-acetyltransferase with acetyl coenzyme A (AcCoA) provided significant protection against the inhibition of iodoacetamide and diethylpyrocarbonate, but only partial protection against the inhibition of phenylglyoxal. These results indicate that cysteine, histidine, and arginine residues are essential for this bacterial activity, and the first two are likely to reside on the AcCoA binding site, but the arginine residue may be located close to the AcCoA binding site. This report is the first demonstration of acetyl CoA:arylamine N-acetyltransferase in L. acidophilus.  相似文献   

4.
Aims: To evaluate the effect of oral administration of Lactobacillus fermentum CRL1446 on the intestinal feruloyl esterase (FE) activity and oxidative status of mice. Methods and Results: Adult Swiss albino mice received Lact. fermentum CRL1446 at the doses 107 and 109 cells per day per mouse for 2, 5, 7 and 10 days. Intestinal FE activity, intestinal microbiota counts, plasmatic thiobarbituric acid‐reactive substances (TBARS) percentage and glutathione reductase (GR) activity were determined. Mice that received Lact. fermentum CRL1446 at the dose 107 cells per day for 7 days showed a twofold increase in total intestinal FE activity, compared to the nontreated group. In large intestine content, FE activity increased up to 6·4 times. No major quantitative changes in colonic microbiota were observed in treated animals. Administration of this strain produced an approx. 30–40% decrease in the basal levels of plasmatic TBARS and an approx. twofold increase in GR activity from day 5 of feeding with both doses. Conclusions: Oral administration of Lact. fermentum CRL1446 to mice increases total intestinal FE activity, decreases the basal percentage of plasmatic lipoperoxides and increases GR activity. Significance and Impact of the Study: Lactobacillus fermentum CRL1446 could be orally administered as a dietary supplement or functional food for increasing the intestinal FE activity to enhance the bioavailability of ferulic acid, thus improving oxidative status.  相似文献   

5.
Lactobacillus acidophilus IBB 801 produces a small bacteriocin, designated acidophilin 801, with an estimated molecular mass of less than 6.5 kDa. It displays a narrow inhibitory spectrum (only related lactobacilli but including the Gram-negative pathogenic bacteria Escherichia coli Row and Salmonella panama 1467) with a bactericidal activity. The antimicrobial activity of cell-free culture supernatant fluid was insensitive to catalase but sensitive to proteolytic enzymes such as trypsin, proteinase K and pronase, heat-stable (30 min at 121 degrees C), and maintained in a wide pH range. The proteinaceous compound was isolated from cell-free culture supernatant fluid and purified. Crude bacteriocin was isolated as a floating pellicle after ammonium sulphate precipitation (40% saturation) and partially purified by extraction/precipitation with chloroform/methanol (2/1, v/v). Further purification to homogeneity was performed by reversed phase Fast Performance Liquid Chromatography. The amino acid composition was determined. Amino acid sequencing revealed that the N-terminal end was blocked.  相似文献   

6.
The release of polysaccharide from the plant cell wall is a key process to release the stored energy from plant biomass. Within the ruminant digestive system, a host of commensal microorganisms speed the breakdown of plant cell matter releasing fermentable sugars. The presence of phenolic compounds, most notably ferulic acid (FA), esterified within the cell wall is thought to pose a significant impediment to the degradation of the plant cell wall. The structure of a FA esterase from the ruminant bacterium Butyrivibrio proteoclasticus has been determined in two different space groups, in both the apo‐form, and the ligand bound form with FA located in the active site. The structure reveals a new lid domain that has no structural homologues in the PDB. The flexibility of the lid domain is evident by the presence of three different conformations adopted by different molecules in the crystals. In the FA‐bound structures, these conformations show sequential binding and closing of the lid domain over the substrate. Enzymatic activity assays demonstrate a broad activity against plant‐derived hemicellulose, releasing at least four aromatic compounds including FA, coumaric acid, coumarin‐3‐carboxylic acid, and cinnamic acid. The rumen is a complex ecosystem that efficiently degrades plant biomass and the genome of B. proteoclasticus contains greater than 130 enzymes, which are potentially involved in this process of which Est1E is the first to be well characterized. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
An extracellular feruloyl esterase (FAE-II) from the culture filtrates of Fusarium oxysporum F3 was purified to homogeneity by SP-Sepharose, t-butyl-HIC and Sephacryl S-200 column chromatography. The protein corresponded to molecular mass and pI values of 27 kDa and 9.9, respectively. The enzyme was optimally active at pH 7 and 45 degrees C. The purified esterase was fully stable at pH 7.0-9.0 and temperature up to 45 degrees C after 1 h incubation. Determination of k(cat)/K(m) revealed that the enzyme hydrolysed methyl sinapinate 6, 21 and 40 times more efficiently than methyl ferulate, methyl coumarate and methyl caffeate, respectively. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 but inactive to the C-2 positions of arabinofuranose such as 4-nitrophenyl 5-O-trans-feruloyl-alpha-L-arabinofuranoside and 4-nitrophenyl 2-O-trans-feruloyl-alpha-L-arabinofuranoside. In the presence of Sporotrichum thermophile xylanase, there was a significant release of ferulic acid from destarched wheat bran by FAE-II, indicating a synergistic interaction between FAE-II and S. thermophile xylanase. FAE-II by itself could release only little ferulic acid from destarched wheat bran. The potential of FAE-II for the synthesis of various phenolic acid esters was tested using as a reaction system a surfactantless microemulsion formed in ternary mixture consisting of n-hexane, 1-propanol and water.  相似文献   

9.
10.
Lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088 (NCK88), was purified and characterized. Lactacin F is heat stable, proteinaceous, and inhibitory to other lactobacilli as well as Enterococcus faecalis. The bacteriocin was isolated as a floating pellet from culture supernatants brought to 35 to 40% saturation with ammonium sulfate. Native lactacin F was sized at approximately 180 kDa by gel filtration. Column fractions having lactacin F activity were examined by electron microscopy and contained micelle-like globular particles. Purification by ammonium sulfate precipitation, gel filtration, and high-performance liquid chromatography resulted in a 474-fold increase in specific activity of lactacin F. The purified bacteriocin was identified as a 2.5-kDa peptide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The lactacin F peptide retained activity after extraction from SDS-PAGE gel slices, confirming the identity of the 2.5-kDa peptide. Variants of NCK88 that failed to exhibit lactacin F activity did not produce the 2.5-kDa band. Sequence analysis of purified lactacin F identified 25 N-terminal amino acids containing an arginine residue at the N terminus. Composition analysis indicates that lactacin F may contain as many as 56 amino acid residues.  相似文献   

11.
The gene estF27, encoding a protein with feruloyl esterase activity, was cloned through functional screening from a soil metagenomic library and expressed in Escherichiacoli BL21 (DE3) with high solubility. Sequence analysis showed that estF27 encoded a protein of 291 amino acids with a predicted molecular mass of 31.16 kDa. According to the substrate specificity, EstF27 was classified as a type A feruloyl esterase. EstF27 displayed optimal activity at 40°C and pH 6.8. This enzyme was stable in a broad pH range of 5.0-10.0 over 24 h, and retained more than 50% of its activity after 96 or 120 h incubation in the presence of 3 M KCl or 5 M NaCl. The enzyme activity was slightly enhanced by the addition of Mg(2+) and Fe(3+) at a low concentration, and completely inhibited by Cu(2+). In the enzymatic hydrolysis of destarched wheat bran, EstF27 could release ferulic acid from it in the presence of xylanase from Thermomyces lanuginosus. Given its alkalitolerance, halotolerance and highly soluble expression, EstF27 is a promising candidate for industrial applications.  相似文献   

12.
A ferulic acid esterase (FAE) from the thermophilic fungus Myceliophthora thermophila (synonym Sporotrichum thermophile), belonging to the carbohydrate esterase family 1 (CE-1), was functionally expressed in methylotrophic yeast Pichia pastoris. The putative FAE from the genomic DNA was successfully cloned in P. pastoris X-33 to confirm that the enzyme exhibits FAE activity. The recombinant FAE was purified to its homogeneity (39 kDa) and subsequently characterized using a series of model substrates including methyl esters of hydroxycinnamates, alkyl ferulates and monoferuloylated 4-nitrophenyl glycosides. The substrate specificity profiling reveals that the enzyme shows a preference for the hydrolysis of methyl caffeate and p-coumarate and a strong preference for the hydrolysis of n-butyl and iso-butyl ferulate. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose, whilst it was found capable of de-esterifying acetylated glucuronoxylans. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with an M3 xylanase from Trichoderma longibrachiatum (a maximum of 41% total FA released after 1 h incubation). Prediction of the secondary structure of MtFae1a was performed in the PSIPRED server whilst modelling the 3D structure was accomplished by the use of the HH 3D structure prediction server.  相似文献   

13.
A feruloyl esterase catalyzes the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from esterified sugars in plant cell walls. Talaromyces cellulolyticus is a high cellulolytic-enzyme producing fungus. However, there is no report for feruloyl esterase activity of T. cellulolyticus. Analysis of the genome database of T. cellulolyticus identified a gene encoding a putative feruloyl esterase B. The recombinant enzyme was prepared using a T. cellulolyticus homologous expression system and characterized. The purified enzyme exhibited hydrolytic activity toward p-nitrophenyl acetate, p-nitrophenyl trans-ferulate, methyl ferulate, rice husk, and bagasse. HPLC assays showed that the enzyme released ferulic acid and p-coumaric acid from hydrothermal-treated rice husk and bagasse. Trichoderma sp. is well-known high cellulolytic-enzyme producing fungus useful for the lignocellulosic biomass saccharification. Interestingly, no feruloyl esterase has been reported from Trichoderma sp. The results show that this enzyme is expected to be industrially useful for biomass saccharification.  相似文献   

14.
Lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088 (NCK88), was purified and characterized. Lactacin F is heat stable, proteinaceous, and inhibitory to other lactobacilli as well as Enterococcus faecalis. The bacteriocin was isolated as a floating pellet from culture supernatants brought to 35 to 40% saturation with ammonium sulfate. Native lactacin F was sized at approximately 180 kDa by gel filtration. Column fractions having lactacin F activity were examined by electron microscopy and contained micelle-like globular particles. Purification by ammonium sulfate precipitation, gel filtration, and high-performance liquid chromatography resulted in a 474-fold increase in specific activity of lactacin F. The purified bacteriocin was identified as a 2.5-kDa peptide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The lactacin F peptide retained activity after extraction from SDS-PAGE gel slices, confirming the identity of the 2.5-kDa peptide. Variants of NCK88 that failed to exhibit lactacin F activity did not produce the 2.5-kDa band. Sequence analysis of purified lactacin F identified 25 N-terminal amino acids containing an arginine residue at the N terminus. Composition analysis indicates that lactacin F may contain as many as 56 amino acid residues.  相似文献   

15.
A feruloyl esterase encoding gene (designated fae6), derived from a leachate metagenomic library, was cloned and the nucleotide sequence of the insert DNA determined. Translational analysis revealed that fae6 consists of a 515 amino acid polypeptide, encoding a 55 kDa pre-protein. The Fae6 primary structure contained the G-E-S-A-G sequence, which corresponds well with a typical catalytic serine sequence motif (G-x-S-x-G). The fae6 gene was successfully over-expressed in E. coli and the recombinant protein was purified to 8.4 fold enrichment with 17% recovery. The K(M) data showed Fae6 has a high affinity to methyl sinapate while thermostability data indicated that fae6 was thermolabile with a half life (T(1/2)) < 30 min at 50°C. High affinity for Fae6 against methyl sinapate, methyl ferulate and ethyl ferulate suggest that the enzyme can be useful in hydrolyzing ferulated polysaccharides in a biorefinery process.  相似文献   

16.
Purification and characterization of pregastric esterase from calf   总被引:1,自引:0,他引:1  
Calf pregastric esterase (PGE) was purified from calf gullet tissues. The tissue was excised and lyophilized, and lipid materials were extracted with acetone and n-butanol at -20 degrees C. Proteins were extracted from the delipidated tissue with a buffer containing a chaotropic salt (NaSCN) to solubilize hydrophobically bound protein aggregates. Calf PGE precipitated from the crude extract at pH 5.0. The precipitated, solubilized proteins were subjected to anion-exchange chromatography on DEAE-Sephacel, and the enzymatic activity was eluted using a linear gradient from 0.10 to 0.50 M NaCl at pH 8.0. Fractions with high specific activities were then chromatographed twice using gel filtration on Sephadex G-100. The resultant enzyme was shown to be pure upon discontinuous electrophoresis in 12% polyacrylamide containing 0.1% sodium dodecyl sulfate (SDS-PAGE). From SDS-PAGE gel patterns, a molecular weight of 49,000 was determined. The amino acid composition of the enzyme allowed calculation of an "average hydrophobicity" (Bigelow index) of 1150 cal/residue. This indicates that calf PGE is relatively hydrophobic, being similar to proteins such as alpha-lactalbumin and bovine serum albumin in average hydrophobicity.  相似文献   

17.
The lignocellulolytic fungus Aureobasidium pullulans NRRL Y 2311-1 produces feruloyl esterase activity when grown on birchwood xylan. Feruloyl esterase was purified from culture supernatant by ultrafiltration and anion-exchange, hydrophobic interaction, and gel filtration chromatography. The pure enzyme is a monomer with an estimated molecular mass of 210 kDa in both native and denatured forms and has an apparent degree of glycosylation of 48%. The enzyme has a pI of 6.5, and maximum activity is observed at pH 6.7 and 60 degrees C. Specific activities for methyl ferulate, methyl p-coumarate, methyl sinapate, and methyl caffeate are 21.6, 35.3, 12.9, and 30.4 micro mol/min/mg, respectively. The pure feruloyl esterase transforms both 2-O and 5-O arabinofuranosidase-linked ferulate equally well and also shows high activity on the substrates 4-O-trans-feruloyl-xylopyranoside, O-[5-O-[(E)-feruloyl]-alpha-L-arabinofuranosyl]-(1,3)-O-beta-D-xylopyranosyl-(1,4)-D-xylopyranose, and p-nitrophenyl-acetate but reveals only low activity on p-nitrophenyl-butyrate. The catalytic efficiency (k(cat)/K(m)) of the enzyme was highest on methyl p-coumarate of all the substrates tested. Sequencing revealed the following eight N-terminal amino acids: AVYTLDGD.  相似文献   

18.
A non-kallikrein arginine esterase (esterase I) has been purified from dog urine and characterized. The enzyme was purified by a three-step procedure, including ion exchange chromatography on DEAE-Sephacel, affinity chromatography on p-aminobenzamidine-Sepharose, and final gel filtration on Ultrogel AcA-54. The purified preparation gave three protein bands on polyacrylamide gel electrophoresis, all of which had esterolytic activity. The enzyme has a specific activity of 601 esterase units/mg protein. It has negligible kininogenase activity. Esterase I gave two closely migrating protein bands on reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis with molecular weights of 34,000 and 33,300. Esterase I is a glycoprotein with a pH optimum of 9.5 and a pI of 4.62. The enzyme is strongly inhibited by a host of inhibitors including aprotinin, leupeptin, antipain, soybean trypsin inhibitor, lima bean trypsin inhibitor, and DPhe-Phe-Arg-chloromethyl ketone (I50 in the 10(-9)-10(-8) M range). However, p-aminobenzamidine, N alpha-p-tosyl-lysyl chloromethyl ketone and phenylmethylsulfonyl fluoride were weak inhibitors, with I50 values in the 10(-5)-10(-7) M range. The enzyme preferentially hydrolyzes Pro-Arg bonds. Among fluorogenic substrates used in this study, butyloxycarbonyl-Val-Pro-Arg-methylcoumarinamide (alpha-thrombin substrate) was found to be the best, with a Km of 1.7 microM and a kcat/Km of 6.3 s.microM-1. However, esterase I does not convert fibrinogen to fibrin nor activate plasminogen to plasmin. Esterase I is immunologically distinct from dog urinary kallikrein, having no cross-reactivity with antibodies against dog kallikrein.  相似文献   

19.
An intracellular aminopeptidase (alpha-aminoacyl-peptide hydrolase (cytosol), EC 3.4.11.1) isolated from cell extracts of Lactobacillus acidophilus R-26 was purified 634-fold to homogeneity. This enzyme, which was responsible for all of the N-terminal exopeptidase and amidase activities observed in crude extracts, had no detectable endopeptidase or esterase activity. Although a broad range of L-amino acid peptide, amide and p-nitroanilide derivatives possessing free alpha-amino termini are attacked, the enzyme favored substrates with hydrophobic N-terminal R groups. The native enzyme, which was found to be a tetramer of molecular weight 156000, contained 4 mol of tightly bound Zn2+. The catalytically inactive native zinc metalloenzyme was capable of being activated by either Zn2+, Co2+, Ni2+ or Mn2+. The shape of the log Vmax versus pH plot indicates that two active-center ionizable groups (pKES1 = 5.80; pKES2 = 8.00) may be involved in catalysis. Methylene-blue-sensitized photooxidation of the enzyme resulted in the complete loss of activity, while L-leucine, a competitive inhibitor, partially protected against this inactivation. Amino-acid analysis indicated that this photooxidative loss of activity corresponds to the modification of one histidine residue per monomer of protein.  相似文献   

20.
Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号