首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA probes were designed from the streptomycin production genes strDELM of Streptomyces griseus involved in the biosynthesis of the 6-deoxyhexose (6DOH) dihydrostreptose which could detect the genomic fragments coding for 6DOH formation in other actinomycetes strains. In about 70% of the 43 strains tested at least one signal could be detected with strD-, strE- or strLM-specific probes. Evidence is presented that the hybridizing genes are mostly clustered and probably engaged in the formation of secondary metabolites. Because of the wide-spread use of 6DOH constituents in natural products these probes should allow to detect a vast array of different secondary metabolic gene clusters in actinomycetes.  相似文献   

2.
3.
4.
5.
At late stages of development of surface cultures streptomycetes producing anthracycline antibiotics were shown to form secondary colonies on PRIDHAM & GOTTLIEB 'S medium with xylose. Stable variants obtained from them possessed an increased biological activity (by a factor of 2–3 times) due to the accumulation of amounts of antibiotically active anthracyclines.  相似文献   

6.
Interactions between nitrogen and carbon metabolism modulate many aspects of the metabolism, physiology and development of plants. This paper investigates the contribution of nitrate and nitrogen metabolism to the regulation of phenylpropanoid and nicotine synthesis. Wild-type tobacco was grown on 12 or 0.2 mm nitrate and compared with a nitrate reductase-deficient mutant [Nia30(145)] growing on 12 mm nitrate. Nitrate-deficient wild-type plants accumulate high levels of a range of phenylpropanoids including chlorogenic acid, contain high levels of rutin, are highly lignified, but contain less nicotine than nitrogen-replete wild-type tobacco. Nia30(145) resembles nitrate-deficient wild-type plants with respect to the levels of amino acids, but accumulates large amounts of nitrate. The levels of phenylpropanoids, rutin and lignin resemble those in nitrogen-replete wild-type plants, whereas the level of nicotine resembles that in nitrate-deficient wild-type plants. Expression arrays and real time RT-PCR revealed that a set of genes required for phenylpropanoid metabolism including PAL, 4CL and HQT are induced in nitrogen-deficient wild-type plants but not in Nia30(145). It is concluded that nitrogen deficiency leads to a marked shift from the nitrogen-containing alkaloid nicotine to carbon-rich phenylpropanoids. The stimulation of phenylpropanoid metabolism is triggered by changes of nitrate, rather than downstream nitrogen metabolites, and is mediated by induction of a set of enzymes in the early steps of the phenylpropanoid biosynthetic pathway.  相似文献   

7.
8.
Two DNA segments, dnrR1 and dnrR2, from the Streptomyces peucetius ATCC 29050 genome were identified by their ability to stimulate secondary metabolite production and resistance. When introduced into the wild-type ATCC 29050 strain, the 2.0-kb dnrR1 segment caused a 10-fold overproduction of epsilon-rhodomycinone, a key intermediate of daunorubicin biosynthesis, whereas the 1.9-kb dnrR2 segment increased production of both epsilon-rhodomycinone and daunorubicin 10- and 2-fold, respectively. In addition, the dnrR2 segment restored high-level daunorubicin resistance to strain H6101, a daunorubicin-sensitive mutant of S. peucetius subsp. caesius ATCC 27952. Analysis of the sequence of the dnrR1 fragment revealed the presence of two closely situated open reading frames, dnrI and dnrJ, whose deduced products exhibit high similarity to the products of several other Streptomyces genes that have been implicated in the regulation of secondary metabolism. Insertional inactivation of dnrI in the ATCC 29050 strain with the Tn5 kanamycin resistance gene abolished epsilon-rhodomycinone and daunorubicin production and markedly decreased resistance to daunorubicin. Sequence comparison between the products of dnrIJ and the products of the Streptomyces coelicolor actII-orf4, afsR, and redD-orf1 genes and of the Streptomyces griseus strS, the Saccharopolyspora erythraea eryC1, and the Bacillus stearothermophilus degT genes reveals two families of putative regulatory genes. The members of the DegT, DnrJ, EryC1, and StrS family exhibit some of the features characteristic of the protein kinase (sensor) component of two-component regulatory systems from other bacteria (even though none of the sequences of these four proteins show a significant overall or regional similarity to such protein kinases) and have a consensus helix-turn-helix motif typical of DNA binding proteins. A helix-turn-helix motif is also present in two of the proteins of the other family, AfsR and RedD-Orf1. Both sets of Streptomyces proteins are likely to be trans-acting factors involved in regulating secondary metabolism.  相似文献   

9.
Summary A collection of 169 streptomycetes representing natural isolates and type strains were examined for resistance phenotypes to 11 antibiotics. A total of 84 profiles were obtained with 18 patterns being repeated in two or more strains. The most common pattern was resistance to penicillin in an otherwise sensitive phenotype and accounted for 51 strains. This data was used to cluster the strains and groups defined were examined for correlation with bioactivity. Antibiotic producers were found in clusters 1, 2, 4 and 5–10. Certain strains in these areas were highly bioactive and typically had multiple resistances. Almost half of the collection of strains examined grouped in cluster 3, and were characterized as having a sensitive phenotype and virtually no biological activity in agrochemical screens.  相似文献   

10.
Protein secretion in streptomycetes   总被引:1,自引:0,他引:1  
Some aspects of the current knowledge on protein secretion in streptomycetes are presented, including recent data on the identification of genes involved in the general secretory pathway, on the importance of the signal peptide structure and on the number of ribosome-binding sites inside signal peptides which can influence the production level of a gene product.  相似文献   

11.
ABSTRACT: BACKGROUND: Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. RESULTS: None of the fifteen Streptomyces isolates inhibited all seven tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of only one of the tested fungi, the mycorrhiza-forming fungus Laccaria bicolor, was stimulated by the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. CONCLUSIONS: Our results show that the primary characteristic of mycorrhiza associated streptomycetes is to inhibit the growth of fungi and bacteria. In parallel, our study indicates that Streptomyces strains which are not general antagonists may produce previously un-described metabolites.  相似文献   

12.
13.
14.
15.
16.
Interest in ubiquinone (UQ) has increased during recent years, mainly because of its antioxidant function and its use as a dietary supplement. However, our knowledge of the biosynthesis, catabolism, and regulation of this lipid in mammalian tissues is quite limited. UQ exhibits a high rate of turnover in all tissues indicating that cells possess efficient metabolic pathways for handling this compound and controlling its tissue levels. Besides reviewing the generally accepted metabolic pathway, alternative synthetic mechanisms are described. The lack of data concerning catabolism and regulation of this compound is emphasized. Reasons for the rather limited uptake of dietary UQ are discussed and alternative mechanisms for its beneficial effects on organ function are suggested. Since appropriate tissue uptake of dietary UQ probably only occurs in deficient states, the definition of partial UQ deficiency and its consequences is urgently needed. The possibility of raising tissue UQ levels by drug treatment or natural metabolites is raised as a choice of preference for the future.  相似文献   

17.
Summary Incorporation of 14C-phenylalanine by T. neapolitanus was inhibited competitively by relatively low concentrations of glycine, serine, alanine, valine, leucine, isoleucine, tryptophan, tyrosine, histidine, threonine, and methionine (Group I amino acids), but not greatly depressed by aspartate, glutamate, lysine, arginine, cysteine (Group II amino acids) and proline at similar concentrations. Group I acids competed with each other for incorporation but were little affected by Group II acids. Similarly Group I acids little depressed the incorporation of Group II acids, among which, however, some mutual inhibition occurred. Incorporation of proline was depressed by both Group I and II acids. Two main permeation mechanisms are proposed, one transporting Group I acids, the other Group II acids, but some overlapping of function probably occurs. Proline may be transported by a third permease, which is subject to inhibition by both Group I and II acids. T. concretivorus also has a common transport mechanism for some amino acids. Less interaction between amino acids was found using two heterotrophic pseudomonads.Exogenous phenylalanine inhibited both the biosynthesis and the uptake of tyrosine and tryptophan by T. neapolitanus. High phenylalanine concentrations depressed the assimilation of 14C-labelled tyrosine and tryptophan less than low ones, suggesting that the bacteria developed a requirement for external tyrosine and tryptophan when exposed to highly inhibitory concentrations of phenylalanine.  相似文献   

18.
19.
20.
Peng Li 《生物学前沿》2011,6(3):171-171
Lipids including cholesterol, phospholipids, fatty acids and triacylglycerols are important cellular constituents involved in membrane structure, energy homeostasis and many biological processes such as signal transduction, organelle development and cell differentiation.Recently, the area of lipid metabolism has drawn a great deal of attention due to its emerging role in the development of metabolic disorders such as obesity, diabetes, atherosclerosis and liver steatosis.We decided to organize a special issue of Frontiers in Biology focusing on our current understanding of lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号