首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Glucocorticoid control of pituitary beta-endorphin (beta-END) release was investigated in vitro and in vivo. Cultured cells of both rat anterior (AL) and neurointermediate (NIL) lobe released beta-END-like immunoreactivity (beta-END-LI) in response to epinephrine (10(-7) M); however, only the response of AL cells was prevented by corticosterone (10(-8)-10(-6) M) or dexamethasone (10(-9)-10(-7) M). Gel chromatographic analysis (Sephadex G-50) revealed that the major forms of beta-END-LI released by AL cells corresponded to beta-END and beta-lipotropin (beta-LPH) in molecular size, whereas virtually all of the immunoreactivity released by NIL cells resembled beta-END. In vivo administration of dexamethasone attenuated the stress-induced release of beta-END-LI in a dose- and time-related fashion, having a more pronounced effect on plasma levels of beta-END-LI corresponding to beta-LPH in molecular size. Metyrapone (100 mg/kg), an inhibitor of glucocorticoid synthesis, evoked a rapid (20-40 min) four- to sixfold increase in total plasma beta-END-LI and 75% of this rise was due to immunoreactivity resembling beta-LPH in size. This response was diminished by coadministration of either dexamethasone (0.05-1.25 mg/kg) or corticosterone (0.05-1.25 mg/kg) and completely prevented by 4-hr pretreatment with dexamethasone (50 micrograms/kg). The briskness of the plasma beta-END-LI response to acute changes in glucocorticoid status suggests that a "rapid" feedback mechanism operates in the physiologic control of pituitary beta-END-LI secretion. Moreover, the ability of glucocorticoids to selectively inhibit AL release of beta-END-LI in vitro and their pronounced effect on plasma levels of beta-END-LI resembling beta-LPH, a marker of AL secretion, together indicate that glucocorticoids exert a selective influence over the secretion of AL corticotrophs in vivo. This demonstration of differential regulation of the AL versus IL secretion of beta-END-LI in vivo most likely reflects a phenomena having biologic importance related to the different physiologic actions of the several molecular forms of beta-END-LI secreted by the two tissues.  相似文献   

3.
4.
Specificity of the effect of prostaglandins (PGs) on hormone release by the anterior pituitary gland was studied using cells in primary culture. Growth hormone (GH) release is stimulated by all eight PGs studied, PGE1 and E2 being 1000-fold more potent than the corresponding PGFs. The release of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin (PRL) remains unchanged upon addition of PGEs. While the basal release of thyrotropin (TSH) is only slightly stimulated by concentrations of PGEs above 10−6M, an important potentiation of the stimulatory effect of thyrotropin-releasing hormone on TSH release is observed. The release of GH, TSH and LH is stimulated equally well by PGAs and PGBs at concentrations higher than 10−6M, 3 × 10−6M, and 10−5M, respectively. PGFs do not affect the release of any of the measured pituitary hormones at concentrations below 10−4M. The stimulation of GH release by PGE2 can be inhibited by the PG antagonist 7-oxa-13-prostynoic acid, a half-maximal inhibition being found at a concentration of 4 × 10−5M of the antagonist in the presence of 10−6M PGE2. In the presence of somatostatin (10−8M), the inhibition of GH release cannot be reversed by PGE2 at concentrations up to 10−4M. 8-bromo-cyclic AMP-induced GH release is additive with that produced by PGE2.The present data show that 1) of the five pituitary hormones measured, only GH release is stimulated by prostaglandins at relatively low concentrations, 2) the PGE-induced GH release can be competitively inhibited by 7-oxa-13-prostynoic acid, 3) the inhibition of GH release by somatostatin cannot be reversed by PGE2 and 4) the PGEs increase the responsiveness of the thyrotrophs to TRH.  相似文献   

5.
The effect of thyrotrophin-releasing hormone (TRH, 10(-7) M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone-releasing hormone (LH-RH, 10(-7) M). Actinomycin D (2 X 10(-5) M) and cycloheximide (10(-4) M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).  相似文献   

6.
M Sato  J Takahara  M Niimi  R Tagawa  S Irino 《Life sciences》1991,48(17):1639-1644
The present study was undertaken to investigate the direct actions of rat galanin (R-GAL) on growth hormone (GH) release from the rat anterior pituitary in vitro. R-GAL modestly but significantly stimulated GH release without an increase in intra- and extracellular cyclic AMP levels in monolayer cultures of rat anterior pituitary cells. This stimulatory effect of R-GAL was dose-dependent but not additive with that of GH-releasing factor (GRF). R-GAL-stimulated GH release was less sensitive to the inhibitory effect of somatostatin than was GRF-stimulated GH release. In perfusions of rat anterior pituitary fragments, R-GAL induced a gradual and sustained increase of GH release. Incremental GH release derived in part from preformed stored GH. These data confirm that R-GAL acts at the pituitary level to stimulate GH release by a mechanism distinct from that of GRF.  相似文献   

7.
(U)Prostaglandins E-1, E2,F-1alpha or F-2 alpha significantly increased the release of GH, with a parallel increase in intracellular cAMP concentrations, while they only protentiated HE-stimulated TSH release. (2) None of the prostaglandins examined consistently effected either the basal or HE-altered release of LH,FSH or prolactin. (3) The prostaglandin synthetase inhibitor, indomethacin, inhibited GH and TSH release and, at high doses of the drug, inhibited prolactin release. In contrast, the drug appeared to potentiate both He and sLRF-stimulated gonadotropin release. It had no significant effect on intracellular cAMP concentration.  相似文献   

8.
Experiment I: Hyperadrenal states were induced in intact heifers (N = 3) or adrenalectomized (ADRX) heifers (N = 3) by constant infusion of ACTH (20.8 micrograms, 1-24 ACTH/h) or hydrocortisone succinate (HS) (30 mg/h), respectively. Control infusions consisted of the saline vehicle. All infusions began on Day 2 of a normal estrous cycle. Exogenous gonadotropin releasing hormone (GnRH) was given as a 100-micrograms bolus i.v. on Days 7, 9, and 11 (intact) or 5, 7, and 9 (ADRX) of the cycle. In intact heifers, the cumulative luteinizing hormone (LH) response was reduced (P less than 0.05) by the ACTH treatment. In ADRX heifers, the HS treatment did not alter the cumulative response but did alter the qualitative response with a time X treatment interaction (P less than 0.01). The LH response in the HS-ADRX animals had a slower onset and lower peak concentrations with a more prolonged response. Experiment II: Dispersed bovine pituitary cells were prepared and incubated at concentrations of 2 X 10(6) viable cells in 2.0 ml per dish. Cells were exposed to cortisol at concentrations of 0.01, 0.10, 0.21 and 1.03 X 10(-6) M for time periods of 8, 14, 20 or 26 h for basal LH secretion studies and 10, 16, 22 and 28 h for GnRH-stimulated LH secretion. Both dosage of cortisol and length of exposure had a depressing effect on basal LH release. The cortisol pretreatment also decreased (P less than 0.001) the LH release following addition of GnRH (8.5 X 10(-8) M) in cultures at all dosages and exposure times of cortisol. However, there was no decrease in LH or protein content of cells. These experiments indicate a direct action of cortisol on the pituitary gland to depress both basal and stimulated LH release.  相似文献   

9.
J R Cashman 《Life sciences》1989,44(19):1387-1393
The effect of arachidonic acid and some of its metabolites have been examined in rat anterior pituitary cells for their ability to release growth hormone. The cytochrome P-450 metabolite, 5,6-epoxyeicosatrienoic acid is a much more effective growth-hormone releasing agent than 15-hydroxyeicosatetraenoic acid, 15-hydroxyeicosatetraenoic acid methyl ester, 5-hydroxyeicosatetraenoic acid or arachidonic acid. The release of growth hormone is rapid, dose-dependent and reaches an apparent saturation after eight minutes. These studies described herein provide evidence that lipoxygenase and cyclooxygenase products of arachidonic acid are less potent while cytochrome P-450 products are more potent in the release of growth hormone from anterior pituitary cells.  相似文献   

10.
We studied whether fatty acids modify adrenocorticotropic hormone (ACTH) release induced by stimulation with corticotropin-releasing hormone (CRH) from rat anterior pituitary cells. Stimulation with CRH (0.01-100 nmol/l) significantly and concentration-dependently increased ACTH release, which was synergistically enhanced by the simultaneous stimulation with 1 nmol/l arginine-vasopressin. Addition of saturated fatty acids (butyrate, caprylate, laurate, palmitate and stearate) in a medium at 1 mmol/l, despite effects on the basal release, significantly reduced the ACTH release induced by CRH (1 nmol/l) stimulation. Caprylate suppressed ACTH release in a concentration-dependent manner. However, unsaturated C18 and C20 fatty acids (oleate, linolate, linolenate and arachidonate) at 1 mmol/l significantly increased the basal release, but none of them suppressed CRH (1 nmol/l)-induced ACTH release. In the presence of caprylate (1 mmol/l), CRH (1 nmol/l)-stimulated increase in cellular calcium ion concentration was diminished. From these results we conclude that saturated fatty acids have a suppressing effect on CRH-induced ACTH increase in primary cultured rat anterior pituitary cells.  相似文献   

11.
12.
The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.  相似文献   

13.
N O Okia 《Life sciences》1983,33(13):1261-1268
Preincubation of pituitary cells for 48 hours with estrogen or clomiphene citrate did not enhance LH release of dispersed pituitary cells after incubation for 4 hours without the secretagogues. In the presence of GnRH, estrogen increased release, but neither the racemic mixture of clomiphene nor its two trans and cis isomers had any appreciable effect on LH release. It is concluded that contrary to published reports, clomiphene in the rat pituitary may behave differently from estrogen in its effects on gonadotrphin release by dispersed cells.  相似文献   

14.
15.
Summary The distribution of laminin was investigated by immunocytochemistry in the rat anterior pituitary in vivo and in primary culture. It was localized by immunofluorescence and by immunoperoxidase in the basement membranes of the pituitary in vivo. In addition it was also found inside glandular cells both in vivo and in culture. The number of immunoreactive cells greatly varied depending on the technical approach used. It was always higher in primary cultures than in vivo. At the electron microscope level, a staining was observed on secretory granules, on rough endoplasmic reticulum cisternae as well as on the membrane of some Golgi saccules and vesicles. Such a localization, at the level of subcellular sites involved in the secretory process, suggests that these cells are able to synthesize and to export in vivo as well as in vitro this component of their basement membranes. This work was supported by grants from CNRS (Grant E.R. 89 and ATP “Pharmacologie des Récepteurs des Neuromediateurs”). Part of this work was performed at the EMBL (Heidelberg) during a short stay of C. Tougard (supported by an EMBO short term fellowship). EDITOR'S STATEMENT This paper documents the interesting observation that glandular cells from anterior pituitary contain laminin in their basement membranes and also apparently synthesize and secrete this extracellular matrix component. Gordon H. Sato  相似文献   

16.
An electron microscopic study was performed to clarify the effects of tunicamycin, a glycosylation inhibitor, on rat anterior pituitary cells. Tunicamycin (10, 50, and 100 micrograms/250 g B.W.) was intraperitoneally injected into rats, which were sacrificed 24 hrs later. Protein hormone producing GH and prolactin cells, and ACTH cells which are known to have a glycosylated precursor, showed no recognizable ultrastructural changes. TSH cells and gonadotrophs, both of which secrete glycoprotein hormones consisting of alpha and beta subunits, showed remarkable dilatation of the rough endoplasmic reticulum, and decreased numbers of secretory granules. These results suggest that the role of glycosylation in TSH cells and gonadotrophs may have a different biological significance from that in ACTH cells.  相似文献   

17.
In this work we analyze the possibility of serotonin (5-HT)-releasing prolactin (PRL) through a direct action at the pituitary level. 5-HT (2 mg/kg i.v.) stimulates PRL secretion in hypophysectomized autotransplanted animals (HAG) significantly and this effect was not influenced by pretreatment with the dopaminergic antagonist domperidone. In perifused pituitaries, 5-HT administration (0.01, 0.1 and 1 microM for 90 min, or 1, 10, 100 microM for 15 min) was ineffective in stimulating PRL release. In pituitaries obtained from animals previously treated with the neurotoxic 5,7-dihydroxytryptamine (5,7-DHT) or vehicle and incubated in the presence of 5-HT (2.5, 5 and 10 microM), no response in PRL secretion was observed. These results suggested that 5-HT does not release PRL through a direct pituitary action, and that the effect observed in HAG animals could be mediated through the release of a PRL-releasing factor after 5-HT administration.  相似文献   

18.
19.
To study the effect of human beta-endorphin (beta h-End) on pituitary response to gonadotropin-releasing hormone (LH-RH) and thyrotropin-releasing hormone (TRH) in vitro, we used dispersed rat pituitary cells. When beta h-End (10(-7) M) was simultaneously added along with LH-RH, its stimulatory effect was blocked and naloxone (NAL, 10(-5) M) did not reverse the beta h-End inhibitory effect. NAL alone elicited an increase in LH release, but in the presence of both stimulants (LH-RH and NAL), LH secretion was lower than that observed with LH-RH alone. TRH stimulatory activity of TSH and PRL secretion was blunted by the presence of beta h-End (10(-7) M) and was not reversed by NAL (10(-5) and 10(-3) M). These data suggest that beta h-End directly blocks the LH, TSH- and PRL-secreting activity of both LH-RH and TRH at the pituitary level. This beta h-End effect is not reversed by the specific opiate receptor blocker NAL.  相似文献   

20.
Previous in vivo studies from our laboratory suggested that glucocorticoids antagonize estrogen-dependent actions on LH secretion. This study investigated whether corticosterone (B) may have similar actions on gonadotropin biosynthesis and secretion in vitro. Enzymatically dispersed anterior pituitary cells from adult female rats were cultured for 48 h in alpha-modified Eagle's medium containing 10% steroid-free horse serum with or without 0.5 nM estradiol (E2). The cells were then cultured for 24 h with or without B in the presence or absence of E2. To evaluate hormone release, 5 x 10(5) cells were incubated with varying doses of GnRH (0, 10(-11)-10(-7) M) or pulsatile GnRH (10(-9) M; 20 min/h) for 4 h. Cell and medium LH and FSH were measured by RIA. To evaluate LH biosynthesis, 5 x 10(6) cells were incubated for an additional 24 h with 10(-10) M GnRH, 60 microCi 3H-glucosamine (3H-Gln), 20 microCi 35S-methionine (35S-Met), and the appropriate steroid hormones. Radiolabeled precursor incorporation into LH subunits was determined by immunoprecipitation, followed by SDS-PAGE. Continuous exposure to GnRH stimulated LH release in a dose-dependent manner, and this response was enhanced by E2. B by itself had no effect on LH release, but inhibited LH secretion in E2-primed cells at low concentrations of GnRH (10(-10) M or less). Total LH content was not altered by GnRH or steroid treatment. Similar effects of B were observed in cells that were given a pulsatile GnRH stimulus. In contrast to LH, E2 or B enhanced GnRH-stimulated FSH release at the higher doses of GnRH, while the combination of E2 and B increased basal and further augmented GnRH-stimulated release. Total FSH content was also increased in the presence of B, but not E2 alone, and was further augmented in cells treated with both steroids. There were no effects of the steroids on the magnitude of FSH release in response to GnRH pulses, but the cumulative release of FSH was greater in the E2 + B group compared to controls, indicating an increased basal release. Independent of E2, B suppressed the incorporation of 3H-Gln into LH by more than 50% of control, with only subtle effects on the incorporation of 35S-Met.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号