首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To further investigate the immunosuppressive activity of cholesterylphosphoserine (CPHS), we examined a variety of human T cell responses including proliferation, adhesion and cytoskeletal organization. The CPHS-induced inhibition of T cell response is greater in the integrin-dependent mixed lymphocyte reaction than in the integrin-independent proliferation elicited by anti-TCR-CD3 or anti-CD28 antibodies in the presence of tetradecanoylphorbol acetate. Consistently, CPHS inhibits the homotypic T cell adhesion involving the integrin alphaLbeta2 (LFA-1) and the cell adhesion to fibronectin and rVCAM-1 involving the integrins of the beta1 family. Since CPHS does not change integrin expression but inhibits post-receptor events such as cell spreading and pseudopodal projections, it seems likely that the site of CPHS influence is distal to the adhesion receptors. In agreement, the steroid prevents the reorganization of actin cytoskeleton occurring when T cells are allowed to spread on immobilized anti-CD3 in the absence of integrin activation. We suggest that CPHS acts on the metabolic pathway in which signals from integrin and growth factor receptors converge to induce the reorganization of the actin cytoskeleton. Selectivity in the action of CPHS is indicated by its ineffectiveness in the integrin-mediated adhesion of the monocytic cell line U-937 to fibronectin.  相似文献   

2.
Hydrogen peroxide (H(2)O(2)) induces a number of events, which are also induced by mitogens. Since the progression through the G1 phase of the cell cycle is dependent on mitogen stimulation, we were interested to study the effect of H(2)O(2) on the cell cycle progression. This study demonstrates that H(2)O(2) inhibits DNA synthesis in a dose-dependent manner when given to cells in mitosis or at different points in the G1 phase. Interestingly, mitotic cells treated immediately after synchronization are significantly more sensitive to H(2)O(2) than cells treated in the G1, and this is due to the inhibition of the cell spreading after mitosis by H(2)O(2). H(2)O(2) reversibly inhibits focal adhesion activation and stress fiber formation of mitotic cells, but not those of G1 cells. The phosphorylation of MAPK is also reversibly inhibited in both mitotic and G1 cells. Taken together, H(2)O(2) is probably responsible for the inhibition of the expression of cyclin D1 and cyclin A observed in cells in both phases. In conclusion, H(2)O(2) inhibits cell cycle progression by inhibition of the spreading of mitotic CHO cells. This may play a role in pathological processes in which H(2)O(2) is generated.  相似文献   

3.
Epitope spreading or endogenous self-priming has been implicated in mediating the progression of autoimmune disease. In the present study we created an immune-deviated, epitope spreading response in SWXJ mice after the onset of experimental autoimmune encephalomyelitis, a prototypic autoimmune animal model widely used in multiple sclerosis research. We established an immunoregulatory spreading repertoire by transferring T cells genetically modified to produce high levels of IL-10 in response to a dominant epitope spreading determinant. Installation of a Th2/Tr1-like spreading repertoire resulted in a marked and prolonged inhibition of disease progression and demyelination characterized by 1) bystander inhibition of the recall response to the priming immunogen, and 2) a Th1-->Tr1 immune-deviated spreading response involving a shift in the source of IL-10 production from the transferred regulatory population to the host-derived, endogenously primed repertoire. Thus, our data provide a rationale for cell-based therapeutic intervention in multiple sclerosis by showing that pre-emptive targeting of the epitope spreading cascade with regulatory T cells effectively induces an immune-deviated spreading response capable of inhibiting ongoing inflammatory autoreactivity and disease progression.  相似文献   

4.
The cytotoxic effect of 5-fluorouracil (5-FU) is mediated by the inhibition of thymidylate synthase (TS), however, at the same time 5-FU is catabolized by dihydropyrimidine dehydrogenase (DPD). Efficacy of 5-FU may therefore depend on the TS and DPD activity and on pharmacogenetic factors influencing these enzymes. Our aims were (1) to determine the distribution of DPD activity, the frequency of DPD deficiency and the DPD (IVS14+1G>A) mutation in the peripheral blood mononuclear cells of colorectal cancer (CRC) patients, and study the relationship between DPD deficiency and toxicity of 5-FU; (2) to investigate the influence of TS polymorphisms and DPD activity on the survival of CRC patients receiving 5-FU-based adjuvant therapy. The frequency of DPD deficiency was determined by radiochemical methods in the peripheral blood mononuclear cells (PBMCs) of 764 CRC patients treated with 5-FU. The relationship between the TS polymorphisms, DPD activity and the disease-free and overall survival was studied in 166 CRC patients receiving 5-FU-based adjuvant therapy. TS polymorphisms were determined in the DNA samples separated from the PBMCs, by PCR-PAGE and PCR-RFLP-PAGE (restriction fragment length polymorphism) methods. Low DPD values (<10 pmol/min/106 PBMCs) were demonstrated in 160/764 patients (20.9%), and of those DPD deficiency (<5 pmol/min/106 PBMCs) was verified in 38 patients (4.9%). In the latter group severe (>Gr 3) toxicity was found in 87%. The prevalence of the DPD IVS14+1G>A mutation among the 38 DPD-deficient patients was 7.8% (3/38) and was accompanied by severe Gr 4 toxic symptoms (neutropenia, mucositis, diarrhea). TS polymorphisms showed a relationship with the survival of CRC patients. It is important to mention that by combining the 3-3 genotypes of 5'-TSER and 3'-TSUTR polymorphisms the obtained 8 genotype combinations showed significantly different Kaplan-Meier survival curves. The evaluation of these curves with Cox regression analysis resulted in two prognostically different groups: "A" good prognosis (RR<1) and "B" bad prognosis (RR>1). The disease-free- and overall survival of these two groups were significantly different. DPD activity also showed correlation with the survival; patients with DPD activity <10 pmol/min/106 PBMCs showed significantly longer disease-free and overall survival. The determination of DPD activity proved to be a more valuable parameter in the evaluation of serious 5-FU-related toxicity compared to the IVS14+1G>A mutation analysis. According to the Cox multivariate analysis the combination of germline TS polymorphisms and DPD activity is/an independent prognostic marker of survival in CRC patients treated with adjuvant 5-FU therapy.  相似文献   

5.
In this study, we examined the activity of recombinant interferon (IFN)-gamma against Plasmodium berghei exoerythrocytic forms (EEF) grown in vitro within the highly differentiated human hepatoma cell line HEPG2. We assayed the effect of IFN-gamma on parasite growth by DNA hybridization using a P. berghei specific DNA probe. The specific activity of IFN-gamma against EEF is very high, and depends upon the time of lymphokine addition. When IFN-gamma is added to HEPG2 cells containing intracellular EEF, 6 hr after sporozoite invasion, parasite DNA replication is inhibited by approximately 75% at 10(3) U/ml and 50% at 1 U/ml. This treatment can either abolish or greatly reduce the infectivity of EEF for mice. When added earlier, 3 hr after completion of sporozoite invasion, IFN-gamma inhibits parasite replication to an even greater degree. The highest levels of inhibition were obtained when IFN-gamma was added 6 hr prior to sporozoite invasion (100% inhibition at 10(2) U/ml, approximately 55% inhibition at 0.1 U/ml, and 17% inhibition at 0.001 U/ml). We found that HEPG2 cells express approximately 44,000 surface receptors for IFN-gamma. These data are consistent with the view that IFN-gamma exerts its antimalarial activity by binding to surface receptors on hepatocytes and inducing intracellular changes unfavorable for parasite development. Tryptophan starvation does not appear to be involved in this process. These findings also support the idea that IFN-gamma, released from immune T cells upon encountering sporozoite antigen, may be an important effector mechanism in sterile immunity to sporozoite challenge.  相似文献   

6.
Hydroquinone (HQ), a reactive metabolite of benzene, is known to inhibit mitogen-stimulated activation of both T and B lymphocytes. Despite extensive study, the underlying mechanism for the immunotoxicity of the HQ is not clear. We have previously demonstrated that 1 micromol/L HQ inhibits TNF-induced activation of NFkappaB in CD4+ T cells, resulting in decreased IL-2 production. NFkappaB, known to be important in T lymphocytes, also plays a critical role in normal B cell development and activation. We therefore hypothesized that alterations in NFkappaB might be involved in HQ-induced B cell immunosuppression as well. In this study, we demonstrate that 1-10 micromol/L HQ inhibits PMA/ionomycin-induced activation of NFkappaB in primary human CD19+ B cells. Inhibition of NFkappaB is accompanied by a dose-dependent decrease in PMA-stimulated production of TNF with no corresponding loss in viability or increased apoptosis. HQ also does not appear to alter NFkappaB directly, as preincubation of B cell nuclear extracts with HQ does not diminish DNA binding activity of this protein. In contrast to T cells, inhibition of NFkappaB by HQ in B cells is not reversible after 72 h in culture, suggesting a long-term functional suppression. These data support our original findings in T cells and indicate that NFkappaB is particularly susceptible to inhibition by HQ. We further hypothesize that inhibition of NFkappaB in lymphocytes, and perhaps other cell types as well, may play a significant role in the observed toxicity of HQ.  相似文献   

7.
The tumor suppressor PTEN dephosphorylates focal adhesion kinase (FAK) and inhibits integrin-mediated cell spreading and cell migration. We demonstrate here that expression of PTEN selectively inhibits activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. PTEN expression in glioblastoma cells lacking the protein resulted in inhibition of integrin-mediated MAP kinase activation. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)- induced MAPK activation were also blocked. To determine the specific point of inhibition in the Ras/Raf/ MEK/ERK pathway, we examined these components after stimulation by fibronectin or growth factors. Shc phosphorylation and Ras activity were inhibited by expression of PTEN, whereas EGF receptor autophosphorylation was unaffected. The ability of cells to spread at normal rates was partially rescued by coexpression of constitutively activated MEK1, a downstream component of the pathway. In addition, focal contact formation was enhanced as indicated by paxillin staining. The phosphatase domain of PTEN was essential for all of these functions, because PTEN with an inactive phosphatase domain did not suppress MAP kinase or Ras activity. In contrast to its effects on ERK, PTEN expression did not affect c-Jun NH2-terminal kinase (JNK) or PDGF-stimulated Akt. Our data suggest that a general function of PTEN is to down-regulate FAK and Shc phosphorylation, Ras activity, downstream MAP kinase activation, and associated focal contact formation and cell spreading.  相似文献   

8.
Hic-5 is a paxillin homologue that is localized to focal adhesion complexes. Hic-5 and paxillin share structural homology and interacting factors such as focal adhesion kinase (FAK), Pyk2/CAKbeta/RAFTK, and PTP-PEST. Here, we showed that Hic-5 inhibits integrin-mediated cell spreading on fibronectin in a competitive manner with paxillin in NIH 3T3 cells. The overexpression of Hic-5 sequestered FAK from paxillin, reduced tyrosine phosphorylation of paxillin and FAK, and prevented paxillin-Crk complex formation. In addition, Hic-5-mediated inhibition of spreading was not observed in mouse embryo fibroblasts (MEFs) derived from FAK(-/-) mice. The activity of c-Src following fibronectin stimulation was decreased by about 30% in Hic-5-expressing cells, and the effect of Hic-5 was restored by the overexpression of FAK and the constitutively active forms of Rho-family GTPases, Rac1 V12 and Cdc42 V12, but not RhoA V14. These observations suggested that Hic-5 inhibits cell spreading through competition with paxillin for FAK and subsequent prevention of downstream signal transduction. Moreover, expression of antisense Hic-5 increased spreading in primary MEFs. These results suggested that the counterbalance of paxillin and Hic-5 expression may be a novel mechanism regulating integrin-mediated signal transduction.  相似文献   

9.
Pregnancy upregulated non-ubiquitous calmodulin kinase (Pnck), a novel calmodulin kinase, is significantly overexpressed in breast and renal cancers. We present evidence that at high cell density, overexpression of Pnck in HEK 293 cells inhibits serum-induced extracellular signal-regulated kinase (ERK1/ERK2) activation. ERK1/2 inhibition is calcium-dependent and Pnck kinase activity is required for ERK1/2 inhibition, since expression of a kinase-dead (K44A) and a catalytic loop phosphorylation mutant (T171A) Pnck protein is unable to inhibit ERK 1/2 activity. Ras is constitutively active at high cell density, and Pnck does not alter Ras activation, suggesting that Pnck inhibition of ERK1/2 activity is independent of Ras activity. Pnck inhibition of serum-induced ERK1/2 activity is lost in cells in which phosphatase and tensin homolog (PTEN) is suppressed, suggesting that Pnck inhibition of ERK1/2 activity is mediated by PTEN. Overexpression of protein phosphatase-active but lipid phosphatase-dead PTEN protein inhibits ERK1/2 activity in control cells and enhances Pnck-mediated ERK1/2 inhibition, suggesting that Pnck increases availability of protein phosphatase active PTEN for ERK1/2 inhibition. Pnck is a stress-responsive kinase; however, serum-induced p38 MAP kinase activity is also downregulated by Pnck in a Pnck kinase- and PTEN-dependent manner, similar to ERK1/2 inhibition. Pnck overexpression increases proliferation, which is inhibited by PTEN knockdown, implying that PTEN acts as a paradoxical promoter of proliferation in ERK1/2 and p38 MAP kinase phosphorylation-inhibited, Pnck-overexpressing cells. Overall, these data reveal a novel function of Pnck in the regulation of ERK1/2 and p38 MAP kinase activity and cell proliferation, which is mediated by paradoxical PTEN functions. The possible biological implications of these data are discussed.  相似文献   

10.
TGF-beta signaling is critical for controlling naive T cell homeostasis and differentiation; however, the biological and biochemical changes induced by TGF-beta in effector/memory T cells are poorly defined. We show that although TGF-beta inhibits effector/memory peripheral blood T lymphoblast proliferation and IL-2 production, the intensity and kinetics for TCR-induced global tyrosine phosphorylation are markedly increased compared with that in untreated cells or naive T cells. After TCR ligation, tyrosine phosphorylation of proximal tyrosine kinases and docking proteins like linker for activation of T cells is maintained for >30 min in TGF-beta-primed cells compared with untreated cells where phosphorylation of these targets returned to basal levels by 10 min. Extended phosphorylation of linker for activation of T cells in treated peripheral blood T selectively prolongs ERK 1/2 signaling and phospholipase C-gamma1 activation leading to increased Ca(2+) flux. A kinase/phosphatase imbalance could not account for extended phosphorylation as CD45R, SHP-1, and SHP-2 expression remains unaltered. The contradiction between prolonged signal transduction and inhibition of proliferation is partially explained by the observation that TGF-beta priming results in ERK 1/2-independent p21 induction and decreased cyclin D1 expression leading to accumulation of T cells in G(0)/G(1) phases of the cell cycle and cell cycle arrest. Despite inhibition of T cell function by TGF-beta priming, TCR and cytokine signaling pathways are intact and selectively extended, suggesting that suppression in the effector/memory T cell is mediated by reprogramming signal transduction, rather than its inhibition as in the naive T cell.  相似文献   

11.
cAMP对转化细胞中几种基因表达及CREB DNA结合活性的影响   总被引:4,自引:0,他引:4  
 从癌基因、抑癌基因及转录因子 CREB(c AMP反应序列结合蛋白 )对 CRE DNA序列结合活性的相关性 ,对 db- c AMP处理的小鼠 C3H10 T1 /2转化细胞增殖抑制作用进行了研究 .实验结果表明 ,转化细胞中 PKA(蛋白激酶 A)活性显著低于正常细胞 ,而 PKC(蛋白激酶 C)活性则显著高于正常细胞 .斑点印迹和 Northern印迹分析显示转化细胞中 c- myc和 Ca M(钙调素 )基因表达明显高于正常细胞 ,而 p53基因和 Rb基因表达则明显低于正常细胞 ,这些差别与 C3H10 T1/ 2 转化细胞增殖失控有关 .转化细胞经 db- c AMP(1 mmol/L)处理后 ,细胞增殖受到明显抑制 ,db- c AMP处理0 .5h后 ,转化细胞中 PKA活性便明显增强 ,PKC活性则被显著抑制 ,处理 2 h后 ,c- myc和 Ca M基因表达下降 ,而 p53和 Rb基因表达则增强 ,这些变化与 c AMP抑制 C3H10 T1/ 2 转化细胞增殖有密切联系 .凝胶阻滞电泳分析显示 db- c AMP(1 mmol/L )处理短时间内 ,CREB对 CRE DNA序列无结合活性 ,1 2 h后开始出现较弱的结合活性 ,2 4 h后才明显加强 ,表明在 db- c AMP处理的早期 ,调控区中含有 CRE序列的基因不参与 db- c AMP对细胞增殖抑制的调节 ,即与 CREB磷酸化及其相应的 DNA结合活性无相关性 .  相似文献   

12.
13.
Adhesion of cells to an extracellular matrix is characterized by several discrete morphological and functional stages beginning with cell-substrate attachment, followed by cell spreading, migration, and immobilization. We find that although arachidonic acid release is rate-limiting in the overall process of adhesion, its oxidation by lipoxygenase and cyclooxygenases regulates, respectively, the cell spreading and cell migration stages. During the adhesion of NIH-3T3 cells to fibronectin, two functionally and kinetically distinct phases of arachidonic acid release take place. An initial transient arachidonate release occurs during cell attachment to fibronectin, and is sufficient to signal the cell spreading stage after its oxidation by 5-lipoxygenase to leukotrienes. A later sustained arachidonate release occurs during and after spreading, and signals the subsequent migration stage through its oxidation to prostaglandins by newly synthesized cyclooxygenase-2. In signaling migration, constitutively expressed cyclooxygenase-1 appears to contribute approximately 25% of prostaglandins synthesized compared with the inducible cyclooxygenase-2. Both the second sustained arachidonate release, and cyclooxygenase-2 protein induction and synthesis, appear to be regulated by the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK)1/2. The initial cell attachment-induced transient arachidonic acid release that signals spreading through lipoxygenase oxidation is not sensitive to ERK1/2 inhibition by PD98059, whereas PD98059 produces both a reduction in the larger second arachidonate release and a blockade of induced cyclooxygenase-2 protein expression with concomitant reduction of prostaglandin synthesis. The second arachidonate release, and cyclooxygenase-2 expression and activity, both appear to be required for cell migration but not for the preceding stages of attachment and spreading. These data suggest a bifurcation in the arachidonic acid adhesion-signaling pathway, wherein lipoxygenase oxidation generates leukotriene metabolites regulating the spreading stage of cell adhesion, whereas ERK 1/2-induced cyclooxygenase synthesis results in oxidation of a later release, generating prostaglandin metabolites regulating the later migration stage.  相似文献   

14.
The proline-rich tyrosine kinase 2, Pyk2, is a focal adhesion related kinase expressed in T cells that is tyrosine phosphorylated and activated by integrin, chemokine or T cell receptor stimulation. Ligation of the cell adhesion molecule CD44 also induces Pyk2 phosphorylation and T cell spreading, and this is negatively regulated by the protein tyrosine phosphatase CD45. Here, we identify the activation requirements for Pyk2 and demonstrate its requirement for CD44-mediated elongated T cell spreading. Upon CD44-mediated cell spreading, Pyk2 was recruited to CD44 clusters in both CD45+ and CD45 T cells, yet was more strongly phosphorylated in T cells lacking CD45. In these cells, Pyk2 phosphorylation was dependent on Src family kinase activity and required actin polymerisation, phosphatidylinositol-3 kinase and phospholipase C activity as well as extracellular calcium. Inhibition of any of these events prevented Pyk2 phosphorylation and T cell spreading. Transfection of a truncated form of Pyk2 lacking the kinase domain, PRNK, inhibited CD44-mediated cell spreading, demonstrating an important role for Pyk2. However, inhibition of microtubule turnover by Taxol prevented elongated T cell spreading but did not affect Pyk2 phosphorylation, indicating that microtubule reorganisation is downstream, or independent, of Pyk2 phosphorylation. Together this demonstrates that multiple factors are required for CD44-induced Pyk2 activation, which plays a critical role in CD44-mediated elongated T cell spreading.  相似文献   

15.
We recently reported having identified of the ligand for an orphan G-protein-coupled receptor, hOT7T175, as the gene product (68-121)-amide of the metastasis suppressor gene KiSS-1. We further showed that the ligand, which we named "metastin," inhibits chemotaxis and invasion of Chinese hamster ovary (CHO) cells transfected with hOT7T175 cDNA (CHO/h175) in vitro, and pulmonary metastasis of hOT7T175-transfected B16-BL6 melanomas in vivo. In the present study, we investigated the activity of metastin in CHO/h175 cells in greater detail. Metastin significantly suppressed motility in a chemotaxis assay and wound healing assay at 10-100 nM order concentrations. Two N-terminally truncated peptides, metastin(40-54) and metastin(45-54) inhibited the migration of CHO/h175 cells as potently as metastin itself. Metastin also inhibited the spreading, monolayer growth and colony formation in agar (0.8%) of CHO/h175 cells at 10-100 nM concentrations. These results indicate that metastin is a potent inhibitor of cell motility, leading to suppression of cell growth and antimetastatic activity, and suggest that low molecular chemical compounds could replace its activity as a novel antimetastatic agent.  相似文献   

16.
The N-terminal domain of NogoA, called amino-Nogo, inhibits axonal outgrowth and cell spreading via a largely unknown mechanism. In the present study, we show that amino-Nogo decreases Rac1 activity and inhibits fibroblast spreading. 12-O-Tetradecanoylphorbol-13-acetate-type tumor promoters, such as phorbol 12-myristate 13-acetate (PMA) and teleocidin, increase Rac1 activity and overcome the amino-Nogo-induced inhibition of cell spreading. The stimulating effect of tumor promoters on cell spreading requires activation of protein kinase D and the subsequent activation of Akt1. Furthermore, we identified Akt1 as a new signaling component of the amino-Nogo pathway. Akt1 phosphorylation is decreased by amino-Nogo. Activation of Akt1 with a cell-permeable peptide, TAT-TCL1, blocks the amino-Nogo inhibition. Finally, we provide evidence that these signaling pathways operate in neurons in addition to fibroblasts. Our results suggest that activation of protein kinase D and Akt1 are approaches to promote axonal regeneration after injury.  相似文献   

17.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

18.
IL-10, a cytokine produced by CD4+ T lymphocytes belonging to the Th-2 subset, has previously been shown to inhibit the synthesis of IFN-gamma by both T cells and NK cells. We now demonstrate that IL-10 can also down-regulate IFN-gamma-dependent immunity by blocking the ability of that lymphokine to activate macrophages. Thus, IL-10, in a dose-dependent manner, inhibits the microbicidal activity of IFN-gamma-treated inflammatory macrophages against intracellular Toxoplasma gondii as well as the extracellular killing of schistosomula of Schistosoma mansoni. This suppression correlates with the inhibition by IL-10 of IFN-gamma-induced production of toxic nitrogen oxide metabolites, an effector mechanism previously implicated in the killing by macrophages of both parasite targets. IL-10 inhibition of nitric oxide production was shown to occur when the cytokine is given before or together with the IFN-gamma-activating stimulus, but not after its removal from the cultures and to require 12 h of contact for maximal suppressive effect on macrophage function. These results, taken together with previous findings on the down-regulation of Th1 lymphokine production by IL-10, indicate that the induction of IL-10 may be an important strategy by which parasites evade IFN-gamma-dependent, cell-mediated immune destruction.  相似文献   

19.
Tangeretin is a methoxyflavone from citrus fruits, which inhibits growth of human mammary cancer cells and cytolysis by natural killer cells. Attempting to unravel the flavonoid's action mechanism, we found that it inhibited extracellular-signal-regulated kinases 1/2 (ERK1/2) phosphorylation in a dose- and time-dependent way. In human T47D mammary cancer cells this inhibition was optimally observed after priming with estradiol. The spectrum of the intracellular signalling kinase inhibition was narrow and comparison of structural congeners showed that inhibition of ERK phosphorylation was not unique for tangeretin. Our data add tangeretin to the list of small kinase inhibitors with a restricted intracellular inhibition profile.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号