首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of leaf surface wetness for montane and subalpine plants   总被引:7,自引:2,他引:5  
The frequency and duration of water on leaf surfaces have important consequences for plant growth and photosynthetic gas exchange. The objective of the present study was to compare the frequency and duration of leaf wetness under natural field conditions among species and to identify variation in structural features of leaves that may reduce surface wetness. During June–September 1992 in the central Rocky Mountains (USA), natural leaf wetting due to rain and dewfall was observed on 79 of 89 nights in open meadow habitats compared to only 29 of 89 nights in the understorey. Dew formation occurred at relative humidities that were often well below 100% because of radiational heat exchange with cold night skies and low wind speeds (< 0.5 m s?1). A survey of 50 subalpine/montane species showed that structural characteristics associated with the occurrence and duration of leaf surface wetness differed among species and habitats. Both adaxial and abaxial surfaces accumulated moisture during rain and dewfall events. Leaf surfaces of open-meadow species were less wettable (P= 0.008), and had lower droplet retention (P= 0.015) and more stomata P= 0.017) than adjacent understorey species. Also, leaf trichomes reduced the area of leaf surface covered by moisture. Ecophysiological importance is suggested by the high frequency of leaf wetting events in open microsites, influences on growth and gas exchange, and correspondence between leaf surface wettability and habitat.  相似文献   

2.
Many foliar pathogens require free water to germinate; therefore, disease pressure should favor plants that are able to repel water. For a suite of 18 sympatric clover species (Trifolium and Medicago, Fabaceae), we evaluated leaf traits affecting leaf wetness and susceptibility to infection by the fungal pathogen Stemphylium sp., causal agent of Stemphylium leaf spot. Spore germination increased with time in free water, and the relative susceptibility of host plants to infection was proportional to the duration of water retention on leaves. Larger leaves captured more water and retained it longer. Unexpectedly, trichomes and leaf wettability did not affect water capture. For clovers planted within natural clover populations at two sites, infection was threefold greater at the wetter site. At the drier site, water retention on the leaf surface was an important predictor of infection rates across host species, but persistent fog and dew at the wetter site reduced the importance of rapid leaf drying. Our results suggest that plant adaptations that reduce water retention on leaves may also reduce disease incidence, but the selective advantage of these traits will vary among habitats.  相似文献   

3.
The distribution of stomata over both leaf surfaces may affect both the photosynthetic rate and water use efficiency of species, implying that species with different photosynthetic and water requirements may also have different stomatal distributions. A database containing data on the distribution of stomata on the leaves of 469 British plant species was used to look for relationships between stomatal distribution (including both location on the leaf and density) and both habitat and morphological variables. Statistical models were applied to the data that minimized any effects that phylogenetic constraints may have had on the data.
Hypostomaty is common in woody species, species which typically occur in shaded habitats and species with large or glabrous leaves. Amphistomaty, however, predominates in species which occur in non-shaded habitats, species with small, dissected or hairy leaves, and in annual species. Amphistomaty, therefore, tends to occur in species where CO2 may be limiting photosynthesis (unshaded environments), or where there are structures to prevent water loss from the leaf (e.g. hairs). Hypostomaty, however, occurs in slow-growing species (e.g. trees), species with leaves which have large boundary layers (large or entire leaves) and in species where CO2 is unlikely to limit photosynthesis (shaded habitats).  相似文献   

4.
Desert plants show specific mechanisms to thrive under prevailing harsh conditions. To study the survival mechanism(s) in native desert plant species, Lesser Cholistan desert in Pakistan was surveyed and two potential salt secretory grass species, Aeluropus lagopoides and Ochthochloa compressa , were selected from five saline sites. Both these grasses responded differentially to saline environments by showing specialized mechanisms of survival including excretion of toxic ions through trichomes, vesicular and glandular hairs through leaf surface. In A. lagopoides , salt tolerance was associated with excreted Na+ concentration through leaf surface and accumulation of useful ions like Ca2+ and K+ in the shoot. Contrarily, O. compressa excreted all the ions through leaves without discriminating among toxic or beneficial ions. Results suggested that A. lagopoides was more successfully adapted to saline desert environments than O. compressa by excretion of excessive toxic ions and retention of Ca2+ and K+ in the shoot. This appears to be an adaptive character of the former species to successfully thrive in harsh desert conditions.  相似文献   

5.
The two main resistances in the exchange of gases between plants and the atmosphere are stomatal and boundary layer resistances. We modeled boundary layer dynamics over glabrous and pubescent leaves (assuming non-exchanging trichomes) with leaf lengths varying from 0.01 to 0.2 m, and windspeeds of 0.1-5.0 m x s(-1). Results from theoretical and semi-empirical formulae were compared. As expected, boundary layer thickness decreased with decreasing leaf length and increasing windspeed. The presence of trichomes increased leaf surface roughness, resulting in lowered Reynolds numbers at which the boundary layer became turbulent. This effect is especially important at low windspeeds and over small leaves, where the Reynolds number over glabrous surfaces would be low. We derived a new simple dimensionless number, the trip factor, to distinguish field conditions that would lead to a turbulent boundary layer based on the influence of trichomes. Because modeled rates of CO2 and H2O(v) exchange over turbulent boundary layers are one or more orders of magnitude faster than over laminar boundary layers, a turbulent boundary layer may lead to increased carbon uptake by plants. The biological trade-off is potentially increased transpirational water loss. However, in understory habitats characterized by low windspeeds, even a few trichomes may increase turbulence in the boundary layer, thus facilitating photosynthetic gas exchange. Preliminary field data show that critical trip factors are exceeded for several plant species, both in understory and open habitats.  相似文献   

6.
西安市常见绿化植物叶片润湿性能及其影响因素   总被引:2,自引:0,他引:2  
利用接触角测定仪测定了西安市21种常见绿化植物叶片表面的接触角,探讨了叶片表面特性如蜡质、绒毛、气孔对接触角的影响。结果表明,植物叶片正背面、物种间的接触角差异均显著,叶片正面和背面接触角大小在40°~140°。接触角大小与变异系数呈负相关,可能由于接触角小的润湿叶片在不同的生境和位置下,受到环境条件的影响较大而出现大的变异;接触角较大的非润湿性叶片,环境物质持留时间较短,对叶片形态和组成影响较小,因而出现小的变异。植物叶片表面的接触角随蜡质含量的升高而增大。表皮蜡质去除后大部分叶片接触角明显降低,尤其是疏水性较强的银杏(Ginkgo biloba)、月季(Ro-sa chinensis)和紫叶小檗(Berberis thunbergii)。女贞(Ligustrum lucidum)正背面、加杨(Popu-lus canadensis)背面等亲水型的叶片蜡质去除后接触角反而增大。叶片绒毛的多少及其形态、分布方式对接触角具有重要的影响,不同的作用方式表现出润湿和不润湿的特征,人为将其去除可以增加叶片的润湿性。背面气孔密度与气孔长度、保卫细胞长度呈负相关;接触角则与气孔密度呈负相关,与气孔长度呈正相关。  相似文献   

7.
Adaptations that reduce water retention on leaf surfaces may increase photosynthetic capacity of cloud forests because carbon dioxide diffuses slower in water than air. Leaf water repellency was examined in three distinct ecosystems to test the hypothesis that tropical montane cloud forest species have a higher degree of leaf water repellency than species from tropical dry forests and species from temperate foothills-grassland vegetation. Leaf water repellency was measured by calculating the contact angle of the leaf surface and the line tangent to a water droplet through the point of contact on the adaxial and the abaxial surface. Leaf water repellency was significantly different between the three study areas. The hypothesis that leaf water repellency is higher in cloud forest species than tropical dry forests and temperate foothills-grassland vegetation was not confirmed in this study. Leaf water repellency was lower for cloud forest species (adaxial surface = 50.8°; abaxial surface = 82.9°) than tropical dry forest species (adaxial surface = 74.5°; abaxial surface = 87.3°) and temperate foothills-grassland species (adaxial surface = 77.6°; abaxial surface = 95.8°). The low values of leaf water repellency in cloud forest species may be influenced by presence of epiphylls and loss of epicuticular wax on the leaf surfaces.  相似文献   

8.
1. Changes of δ13C and its relation to leaf development, biochemical content and water stress were monitored over a 2 year period in two co-occurring Mediterranean oak species: the deciduous Quercus pubescens and the evergreen Quercus ilex .
2. The time course of leaf δ13C showed different patterns in the two species. Young Q. pubescens leaves had a high δ13C and a marked decrease occurred during leaf growth. In contrast, leaves at budburst and maturity did not differ significantly in the case of Q. ilex . We suggest that the difference between δ13C of young leaves was linked to differential use of reserves of carbon compounds in the two species.
3. δ13C values of mature leaves were negatively correlated with minimum seasonal values of predawn water potential, suggesting that a functional adjustment to water resources occurred.
4. There was a significant correlation between individual δ13C values for two successive years. This interannual dependence showed that δ13C rankings between trees were constant through time.  相似文献   

9.
Abstract. The effect of plant competition on spectral reflectance in the 400–2500 nm wavelength region was determined for 3-month-old and 15-month-old leaves of loblolly pine ( Pinus taeda L.). Strong competition decreased water potentials and Mg concentrations, and increased K in young and old leaves. Also, competition decreased Ca and total chlorophyll in young leaves. As measured with a scanning radiometer, reflectance in young leaves at 551 nm decreased from 20 to 14% as water potentials increased from -2.2 to -0.9 MPa (r2= 0.82). For young and old leaves reflectance at 551 nm decreased from 20 to 10% with increasing total chlorophyll (r2= 0.64). Reflectance decreased slightly with increasing K in young leaves (401 nm, r2= 0.55), and with increasing Mg in old leaves (470 nm, r2= 0.57). Increased visible reflectance under strong competition may have resulted primarily from decreased water potentials. Reflectances were much greater in young versus old leaves in the 750–1300 nm range, and were greater in old rather than young leaves from 1400–2500 nm. Infrared reflectances were not, however, significantly affected by competition.  相似文献   

10.
Tropical cloud forests are considered humid ecosystems with frequent cloud cover down to the ground surface. However, seasonal variation in precipitation may induce short-term water stress. For canopy leaves, this water stress may also be a consequence of large atmospheric vapor pressure deficits. The objective of this work was to study five canopy cloud forest species to determine if there are restrictions to leaf gas exchange as a consequence of seasonality in precipitation and to daily water deficit due to air evaporative demand mainly during maximum incoming radiation hours. Seasonal daily courses of microclimatic variables (air temperature, relative humidity, photosynthetic photon flux density) and plant responses (leaf water potential, stomatal conductance, CO2 assimilation rates, leaf nitrogen concentration) were measured at 2400 m asl in Monterrey, an intermontane valley of the Venezuelan Andes. A gradient in terms of responses to water stress conditions was observed between the species, with Clusia multiflora (a 46% reduction in stomatal conductance between seasons) as the most affected and Miconia resimoides (increased stomatal conductance) responding more favorably to slight water stress conditions. If we consider the limitations of water stress and/or light conditions on CO2 assimilation we may arrange the species into those in which water stress conditions have a greater impact on leaf carbon gain, those where light conditions are determinant and one in which both water stress and light conditions may affect leaf carbon assimilation.  相似文献   

11.
Abstract. The authors examine the isotopic composition of leaf water, at natural abundance levels, as influenced by transpiration rate. The isotopic composition of water of wheat leaves ( Triticum aestivum L. var. Aroona) was followed while their transpiration rate adjusted to 'steady-state' environmental conditions. Leaf diffusive resistance was modified by short-term salt treatment and by plant culture in either nutrient solution, free-draining sand, or vermiculite. Resultant changes in 18O and 2H in leaf water are described and fitted to the model of Leaney et al. (1985). The treatments with lower transpiration rates were found to have a greater fraction of their leaf water equilibrated with water vapour in the atmosphere. Comparable results were obtained with both 18O and 2H, with some differences being interpreted in terms of turbulence in the vapour diffusion path. The fraction of the leaf water equilibrated with the atmosphere varied between leaves of different ages. However, this may have been due to their different positions in the canopy.  相似文献   

12.
Abstract. Factors affecting stomatal conductance (g1) of pearl millet ( Pennisetum americanum [L.] Leeke), cultivar BJ 104, were examined in the field in India during the dry season.
Diurnal changes in g1 were evaluated for upper expanded leaves at flowering on two occasions using plants subjected to varying degrees of water stress. Except for the most severely stressed treatment, diurnal changes in g1 closely matched changes in irradiance ( I ), the promotive effect of which largely overcame opposing influences on g1 of increasing atmospheric vapour pressure deficit, and decreasing leaf water and turgor potentials (Ψ, Ψp).
Two main effects of water stress on g1 were evident: (i) a decrease in the amplitude of the mid-day peak in g1, and (ii) a decrease in the time over which high g1 was maintained, resulting in early (mid-day) closure and hysteresis in the relationship between g1 and I .
Leaf conductance was greatest for upper leaves and decreased down the canopy. At equivalent depths in the canopy g1 was higher in flowering than in photoperiodically-retarded plants of the same age. The magnitude of water stress-induced stomatal closure increased down the plant, and was more marked in retarded than in flowering plants.
Within individual stress treatments Ψ of upper leaves decreased linearly as transpiration flux increased. It is concluded that stomatal behaviour of upper leaves of pearl millet at flowering largely operates to maximize assimilation rather than to minimize water loss.  相似文献   

13.
BACKGROUND AND AIMS: Changes in number of trichomes and in composition and concentrations of their exudates throughout leaf development may have important consequences for plant adaptation to abiotic and biotic factors. In the present study, seasonal changes in leaf trichomes and epicuticular flavonoid aglycones in three Finnish birch taxa (Betula pendula, B. pubescens ssp. pubescens, and B. pubescens ssp. czerepanovii) were followed. METHODS: Trichome number and ultrastructure were studied by means of light, scanning and transmission electron microscopy, while flavonoid aglycones in ethanolic leaf surface extracts were analysed by high-pressure liquid chromatography. KEY RESULTS: Density of both glandular and non-glandular trichomes decreased drastically with leaf expansion while the total number of trichomes per leaf remained constant, indicating that the final number of trichomes is established early in leaf development. Cells of glandular trichomes differentiate before those of the epidermis and produce secreted material only during the relatively short period (around 1-2 weeks) of leaf unfolding and expansion. In fully expanded leaves, glandular trichomes appeared to be at the post-secretory phase and function mainly as storage organs; they contained lipid droplets and osmiophilic material (probably phenolics). Concentrations (mg g(-1) d. wt) of surface flavonoids decreased with leaf age in all taxa. However, the changes in total amount ( microg per leaf) of flavonoids during leaf development were taxon-specific: no changes in B. pubescens ssp. czerepanovii, increase in B. pendula and in B. pubescens ssp. pubescens followed by the decline in the latter taxon. Concentrations of most of the individual leaf surface flavonoids correlated positively with the density of glandular trichomes within species, suggesting the participation of glandular trichomes in production of surface flavonoids. CONCLUSIONS: Rapid decline in the density of leaf trichomes and in the concentrations of flavonoid aglycones with leaf age suggests that the functional role of trichomes is likely to be most important at the early stages of birch leaf development.  相似文献   

14.
Leaf δ13C is an indicator of water-use efficiency and provides useful information on the carbon and water balance of plants over longer periods. Variation in leaf δ13C between or within species is determined by plant physiological characteristics and environmental factors. We hypothesized that variation in leaf δ13C values among dominant species reflected ecosystem patterns controlled by large-scale environmental gradients, and that within-species variation indicates plant adaptability to environmental conditions. To test these hypotheses, we collected leaves of dominant species from six ecosystems across a horizontal vegetation transect on the Tibetan Plateau, as well as leaves of Kobresia pygmaea (herbaceous) throughout its distribution and leaves of two coniferous tree species ( Picea crassifolia, Abies fabri ) along an elevation gradient throughout their distribution in the Qilian Mountains and Gongga Mountains, respectively. Leaf δ13C of dominant species in the six ecosystems differed significantly, with values for evergreen coniferous13C values of the dominant species and of K. pygmaea were negatively correlated with annual precipitation along a water gradient, but leaf δ13C of A. fabri was not significantly correlated with precipitation in habitats without water-stress. This confirms that variation of δ13C between or within species reflects plant responses to environmental conditions. Leaf δ13C of the dominant species also reflected water patterns on the Tibetan Plateau, providing evidence that precipitation plays a primary role in controlling ecosystem changes from southeast to northwest on the Tibetan Plateau.  相似文献   

15.
Electrical conductance ( λ ) was measured continuously and in vivo on leaf surfaces of Vicia faba and Aegopodium podagraria . λ increased with rise and decreased with fall in humidity, exhibiting a hysteresis during an applied humidity cycle [90–20–-90% relative humidity (r.h.)]. After treatment with NaNO3 aerosols, a sudden increase in λ was observed at 73% r.h., which is close to the deliquescence point of the salt. Transpiration and electrical conductance of untreated leaves were measured simultaneously under conditions of constant r.h., while the photosynthetic photon flux density and CO2 concentration of the air were varied to induce changes of stomatal aperture. At 35% r.h., changes of light and CO2 level revealed a strong correlation between stomatal conductance ( g S) and λ for Vicia faba leaves. This was also found at 90, 75, 60, 45 and 25% r.h. on the lower but not on the astomatous, upper surface of Aegopodium podagraria . The correlation between g S and λ for stomata-bearing leaf surfaces indicates that an equilibrium exists between the ambient water vapour phase and the liquid water phase on and within the cuticle. This is modified by transpired water vapour influencing the air humidity inside the boundary layer. Our results imply re-condensation of transpired water vapour to salts on the leaf surface and its sorption to the cuticle.  相似文献   

16.
Ozone, leaf age and water stress each affected leaf conductance in soybean [ Glycine max (L.) Merr. Hodgson], but there were no interactions among these factors. Exposure to increased concentrations of O3 (0.01, 0.05, 0.09. and 0.13 μl l−1) resulted in linear declines in abaxial and adaxial conductances in leaves of all ages. There were no differences in relative response to O3 between the two leaf surfaces. For well-watered plants, water use efficiency also decreased with exposure to increased O3 concentrations (water-stressed plants were not tested). Abaxial conductance increased as leaves aged from 4 to 10 days and then declined with further aging. Adaxial conductance decreased with all increases in leaf age beyond 4 days, and the ratio of abaxial/adaxial conductance increased continuously throughout the leaf lifespan. During water-stress cycles (water withheld for 2–3 days) leaves of water-stressed plants had lower conductances than those from well-watered plants, and there was no difference in relative response between abaxial and adaxial stomata.  相似文献   

17.
1. Four Lotus corniculatus genotypes differing in cyanoglycoside and condensed tannin concentrations were grown in either low (350 ppm) or high (700 ppm) atmospheric CO2 environments. Larval performance, consumption and conversion efficiency of Polyommatus icarus feeding on this plant material were measured.
2. Plants grown under elevated CO2 contained less cyanoglycosides, more condensed tannins and more starch than control plants. However, water concentration, nitrogen and protein as well as nitrogen concentration in relation to carbon concentration did not differ between CO2 treatments.
3. The four genotypes differed significantly in condensed tannins, cyanoglucoside, leaf water and leaf nitrogen but no genotype–CO2 interaction was detected, except for total phenolics and condensed tannins in which two plant genotypes showed stronger increases under elevated CO2 than the other two.
4. Larvae of P . icarus consumed more plant material and used and converted it more efficiently from plants grown at high atmospheric CO2.
5. Larvae developed significantly faster and were significantly heavier when fed plant material grown under elevated CO2. The observed difference in mass disappeared in the pupal and adult stages. However, lipid concentration of adults from the elevated CO2 treatment was marginally significantly higher than of controls.
6. It is concluded that the higher carbohydrate concentration of L . corniculatus plants grown at elevated CO2 renders leaves more suitable and better digestible to P . icarus . Furthermore, differences in allelochemicals might influence the palatability of L . corniculatus leaves for this specialist on Fabaceae.  相似文献   

18.
城市绿化植物叶片表面特征对滞尘能力的影响   总被引:15,自引:0,他引:15  
王会霞  石辉  李秧秧 《应用生态学报》2010,21(12):3077-3082
以西安市21种常见绿化植物为对象,采用人工降尘方法测定植物叶片的最大滞尘量,研究植物叶片表面绒毛、润湿性、表面自由能及其分量对滞尘能力的影响.结果表明: 21种供试植物叶片的最大滞尘量在0.8~38.6 g·m-2,不同树种最大滞尘量差异显著,物种间相差40倍以上.叶片表面绒毛数量及其形态、分布特征对滞尘能力具有重要影响,可能与绒毛和颗粒物间的作用方式有关.除叶片表面着生绒毛的悬铃木、国槐、榆叶梅和毛梾4个物种外,其他植物叶片接触角与最大滞尘量均呈显著负相关.接触角较小、易润湿的植物叶片最大滞尘量在2.0~8.0 g·m-2,而接触角较大的银杏、三叶草、紫叶小檗和鸡爪槭的最大滞尘量均<2.0 g·m-2.叶片表面自由能主要表现分子间色散力的作用,而极性分量对表面自由能的贡献低于20%,可能与叶片表面含有的非极性或弱极性物质有关.最大滞尘量与叶片表面自由能及其色散分量呈显著正相关,而与极性分量的相关关系不显著.  相似文献   

19.
Leaf water potentials below threshold values result in reduced stomatal conductance (gs). Stomatal closure at low leaf water potentials may serve to protect against cavitation of xylem. Possible control of gs by leaf water potential or hydraulic conductance was tested by drying the rooting medium in four herbaceous annual species until gs was reduced and then lowering the [CO2] to determine whether gs and transpiration rate could be increased and leaf water potential decreased and whether hydraulic conductance was reduced at the resulting lower leaf water potential. In all species, low [CO2] could reverse the stomatal closure because of drying despite further reductions in leaf water potential, and the resulting lower leaf water potentials did not result in reductions in hydraulic conductance. The relative sensitivity of gs to internal [CO2] in the leaves of dry plants of each species averaged three to four times higher than in leaves of wet plants. Two species in which gs was reputed to be insensitive to [CO2] were examined to determine whether high leaf to air water vapor pressure differences (D) resulted in increased stomatal sensitivity to [CO2]. In both species, stomatal sensitivity to [CO2] was indeed negligible at low D, but increased with D, and low [CO2] partly or fully reversed closure caused by high D. In no case did low leaf water potential or low hydraulic conductance during drying of the air or the rooting medium prevent low [CO2] from increasing gs and transpiration rate.  相似文献   

20.
Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae   总被引:1,自引:0,他引:1  
The distinctive foliar trichome of Bromeliaceae has promoted the evolution of an epiphytic habit in certain taxa by allowing the shoot to assume a significant role in the uptake of water and mineral nutrients. Despite the profound ecophysiological and taxonomic importance of this epidermal structure, the functions of nonabsorbent trichomes in remaining Bromeliaceae are not fully understood. The hypothesis that light reflection from these trichome layers provides photoprotection was not supported by spectroradiometry and fluorimetry in the present study; the mean reflectance of visible light from trichome layers did not exceed 6.4% on the adaxial surfaces of species representing a range of ecophysiological types nor was significant photoprotection provided by their presence. Several reports suggesting water repellency in some terrestrial Bromeliaceae were investigated. Scanning electron microscopy (SEM) and a new technique-fluorographic dimensional imaging (FDI)-were used to assess the interaction between aqueous droplets and the leaf surfaces of 86 species from 25 genera. In the majority of cases a dense layer of overlapping, stellate or peltate trichomes held water off the leaf epidermis proper. In the case of hydrophobic tank-forming tillandsioideae, a powdery epicuticular wax layer provided water repellency. The irregular architecture of these indumenta resulted in relatively little contact with water droplets. Most mesic terrestrial Pitcairnioideae examined either possessed glabrous leaf blades or hydrophobic layers of confluent trichomes on the abaxial surface. Thus, the present study indicates that an important ancestral function of the foliar trichome in Bromeliaceae was water repellency. The ecophysiological consequences of hydrophobia are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号