首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides −496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides −308/−235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (−264/−259) and investigated whether HIF-1 is associated with insulin regulation of “endogenous” hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.  相似文献   

5.
6.
7.
We have analyzed the effects of a variety of hormones on activity of the rat GH (rGH), human GH, (hGH), and bovine GH (bGH) promoters. After transient transfection of rat pituitary tumor cells, all three promoters are induced by addition of 8-bromo-cAMP. Sequences required for the cAMP responsiveness of the hGH and rGH promoter lie within 183 base pairs of the mRNA start site. Although the rGH promoter is thyroid hormone (T3) responsive in this system, a construct containing 2.7 kilobases of the hGH promoter 5'-flanking sequences is not. Since we also found that the bGH promoter is T3 responsive in these cells, the hGH results are not likely to be due to a species specific factor required for induction in rat pituitary cells. The hGH promoter is weakly induced by dexamethasone whereas the rGH promoter does not respond to glucocorticoids. The hGH and rGH promoters are not responsive to TRH. These results illustrate the potential heterogeneity in hormonal responses of the same gene in different species.  相似文献   

8.
The human growth hormone (hGH) transient assay system described here is based on the expression of hGH directed by cells transfected with hGH fusion genes. Levels of secreted hGH in the medium, measured by a simple radioimmunoassay, are proportional to both levels of cytoplasmic hGH mRNA and the amount of transfected DNA. The system is extremely sensitive, easy to perform, and is qualitatively different from other transient expression systems in that the medium is assayed and the cells themselves are not destroyed. The hGH transient assay system is appropriate for analyses of regulation of gene expression and was utilized here to investigate the effect of the simian virus 40 enhancer on the herpes simplex virus thymidine kinase promoter and the effect of zinc on the mouse metallothionein-I promoter. The expression of hGH can also be used as an internal control to monitor transfection efficiency along with any other transient expression system. All cell types tested thus far (including AtT-20, CV-1, GC, GH4, JEG, L, and primary pituitary cells) were able to secrete hGH into the medium.  相似文献   

9.
The effects of dexamethasone (Dex) on insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-1 production were investigated in primary cultures of rat hepatocytes. Dex enhanced the secretion of IGFBP-1 as measured by ligand blot analysis but did not show any prominent effect on immunoreactive IGF-I secretion. EC50 of Dex on IGFBP-1 secretion was calculated to be 3 x 10(-8) M. The content of IGFBP-1 mRNA in the cells increased greatly in the presence of Dex but the IGF-I mRNA content did not change significantly under the same conditions. Insulin showed the opposite effect of Dex by decreasing the production of IGFBP-1 and the cellular content of IGFBP-1 mRNA. This effect of insulin was observed also with Dex in the medium. These results show that the gene expression of IGF-I and IGFBP-1 is differently regulated by glucocorticoids and insulin in primary cultures of rat hepatocytes. The results most possibly explain the in vivo effects of glucocorticoids and insulin in regulation of IGF-I and IGFBP-1 production by liver.  相似文献   

10.
The amino-terminal portion of human growth hormone, residues 1-43 (hGH1-43), has insulin-potentiating action, while a hyperglycemic pituitary peptide (HP), which co-purifies with human growth hormone (hGH), is antagonistic to the action of insulin. The effects of hGH, hGH1-43, and HP on glucose metabolism were assessed in young (4-5 weeks) and adult (6-8 months) hypophysectomized yellow Avy/A mice which lacked any interfering endogenous pituitary hormones, and compared with age-matched intact obese yellow Avy/A and lean agouti A/a mice. Treatment with hGH1-43 or HP did not promote body growth in hypophysectomized yellow mice; but after 2 weeks of treatment with hGH, there was a significant increase in body weight (P less than 0.05). Treatment with HP raised blood glucose and lowered insulin concentrations in obese yellow mice, but not in agouti or hypophysectomized yellow mice. The severely impaired glucose tolerance of the hypophysectomized yellow mice was improved by acute (60 min) and chronic (3 days) treatment with hGH1-43 as well as by 2 weeks of treatment with hGH; in contrast, HP had no effect. Glucose oxidation in adipose tissue from obese yellow mice was low and showed essentially no response to stimulation by insulin at doses lower than 1000 microunits/ml. Basal glucose oxidation rates in adipose tissue taken from agouti and hypophysectomized yellow mice were significantly higher (P less than 0.001) than those in tissue from obese yellow mice, and the rates responded significantly (P less than 0.05) to 100 microunits/ml insulin. The insulin binding affinities in liver membranes from agouti mice were higher than those from either obese or hypophysectomized yellow mice. The insulin receptor densities were similar in both agouti and obese yellow mice, but higher in hypophysectomized yellow mice (P less than 0.05). Treatment with hGH1-43 slightly increased, although not significantly, the insulin receptor density in yellow obese mice while hGH showed essentially no change. Therefore, hypophysectomy appeared to increase tissue response and decrease insulin resistance by increasing receptor numbers and lowering the circulating insulin levels. Furthermore, the insulin-like action of hGH was elicited directly in vivo by hGH1-43 in hypophysectomized yellow mice.  相似文献   

11.
本研究旨在探讨活化素(activin)对大鼠垂体GH3细胞中人生长激素(hGH)基因启动子活性的影响及其可能的调节机制。采用荧光素酶报告基因方法。首先建立含hGH基因启动子(-484~+30bp)和荧光素酶融合基因的稳定转染GH3细胞株,然后加入活化素或同时加入活化素与相关信号转导途径的激动剂,通过检测细胞培养液和细胞裂解液中GH的含量,以及GH3细胞内荧光素酶的变化,反映活化素对GH分泌、合成和hGH基因启动子活性的影响。将含不同长度hGH基因启动子序列的荧光素酶表达质粒分别转染GH3细胞,观察它们对活化素的反应,寻找活化素影响hGH基因启动子活性的关键DNA序列。结果表明,活化素(5,50nmol/L)能抑制大鼠垂体GH3细胞中GH的分泌和合成,活化素(5,50nmol/L)还能够抑制GH3细胞中hGH基因启动子的活性,使之仅达对照组的77%和69%;在胞内信号转导激动剂中,丝裂原活化蛋白激酶激酶(MAPKK/MEK)特异性激动剂C6ceramide(1μmol/L)完全取消了活化素对hGH基因启动子活性的抑制作用;活化素发挥抑制作用所需要的hGH基因启动子关键序列位于-132~-66bp之间。上述研究表明,活化素能抑制大鼠垂体GH3中hGH基因启动子的活性,它可能是通过抑制细胞内依赖MAPK的信号转导途径来完成的,同时hGH启动子上-132~-66bp的序列在其中发挥重要的作用。  相似文献   

12.
Expression of human growth hormone (hGH) was targeted to growth hormone-releasing (GRF) neurons in the hypothalamus of transgenic rats. This induced dominant dwarfism by local feedback inhibition of GRF. One line, bearing a single copy of a GRF-hGH transgene, has been characterized in detail, and has been termed Tgr (for Transgenic growth-retarded). hGH was detected by immunocytochemistry in the brain, restricted to the median eminence of the hypothalamus. Low levels were also detected in the anterior pituitary gland by radioimmunoassay. Transgene expression in these sites was confirmed by RT-PCR. Tgr rats had reduced hypothalamic GRF and mRNA, in contrast to the increased GRF expression which accompanies GH deficiency in other dwarf rats. Endogenous GH mRNA, GH content, pituitary size and somatotroph cell number were also reduced significantly in Tgr rats. Pituitary adrenocorticotrophic hormone (ACTH) and thyroid-stimulating hormone (TSH) levels were normal, but prolactin content, mRNA levels and lactotroph cell numbers were also slightly reduced, probably due to feedback inhibition of prolactin by the lactogenic properties of the hGH transgene. This is the first dominant dwarf rat strain to be reported and will provide a valuable model for evaluating the effects of transgene expression on endogenous GH secretion, as well as the use of GH secretagogues for the treatment of dwarfism.  相似文献   

13.
14.
Abstract: To identify signals that direct the proteolytic processing and regulated secretion of human proenkephalin (hPE), we have transfected the hPE gene or minigene constructs into pituitary tumor cells, either rat GH4C1 cells or mouse AtT-20 cells. Cells transfected with either the hPE gene or minigene contained similar levels of methionine-enkephalin (ME)-containing peptides and hPE mRNA. In the GH4C1 clones, ME was present predominantly in high-molecular-mass forms (5–25 kDa). In contrast, the AtT-20 clones contained almost exclusively free ME and low-molecular-mass forms (<5 kDa), with very little high-molecular-mass species present. Thus, among pituitary cells, corticotroph-derived cells appear better equipped to process hPE than lactotroph-derived cells. Despite limited proteolytic processing, GH4C1 clones secreted large amounts of unprocessed (>20 kDa) hPE into the medium, making up to 10% of endogenous rat prolactin secretion. Both precursor and processed forms of ME were cosecreted acutely (<1 h) with rat prolactin, and release of both polypeptides was stimulated up to 12-fold by secretagogues. Thus, complete proteolytic processing was not required for accurate targeting of hPE to the regulated secretory pathway. When transfected with constructs bearing deletions of amino-terminal amino acids 2–43 or 2–67, i.e., part or nearly all of the synenkephalin moiety, GH4C1 cells handled the modified protein much like cells expressing the complete protein. They did not process the modified hPE extensively, but the protein was correctly targeted to the regulated secretory pathway. AtT-20 cells transfected with truncated hPE cDNA constructs expressed and processed the protein as efficiently as cells expressing unmodified hPE and expressed predominantly low-molecular-mass forms of ME. Therefore, the structural features required for correct targeting and processing are not present in the cysteine-rich amino-terminal third of the prohormone. It is interesting that the deletions did not include the SHLL peptide motif in synenkephalin, a motif that has been proposed as a sorting signal.  相似文献   

15.
16.
AIM: To study the effect(s) of interferon gamma (IFN-gamma) on the activity of human growth hormone (hGH) gene promoter in rat pituitary GH3 cells and the molecular mechanism underlying the effect(s). METHODS: Cell transfection and luciferase reporter gene were used. RESULTS: IFN-gamma (10(2) and 10(3) U/ml) increased the activity of hGH in GH3 cells. The addition of the mitogen-activated protein kinase inhibitor PD98059 (40 micromol/l) to the cells blocked the stimulatory effect of IFN-gamma. Neither overexpression of Pit-1 nor inhibiting Pit-1 expression affected IFN-gamma induction of hGH promoter activity. To identify the DNA sequence that mediated the effect of IFN-gamma, four deletion constructs of hGH gene promoter were created. The stimulatory effect of IFN-gamma was abolished following deletion of the -250 to -132 fragment. CONCLUSIONS: IFN-gamma increases the activity of hGH gene promoter in rat pituitary GH3 cells. This stimulatory effect of IFN-gamma appears to require the intracellular mitogen-activated protein kinase-dependent signaling pathway. The effect of IFN-gamma requires the promoter sequence that spans the -250 to -132 fragment of the gene, but is unrelated to Pit-1 protein.  相似文献   

17.
18.
The expression and hormonal regulation of chimaeric genes containing the 5'-flanking regions of the normal human growth hormone (hGH-1), the variant hGH (hGH-2) and chorionic somatomammotropin (hCS-1) genes fused to the chloramphenicol acetyl transferase (CAT) gene has been examined after transient transfection into cultured rat pituitary (GC), and non-pituitary (HeLa and Rat 2) tumor cells. As assessed by levels of CAT activity, the hGH-1 and hCS-1 gene hybrids were expressed at 5- to 25-fold higher levels in GC cells than in HeLa or Rat 2 cells. The hGH-2 gene hybrid was expressed at very low levels in all 3 cell types. Triiodothyronine treatment of transiently transfected GC cells had little effect on CAT activity from the hGH-1 gene hybrid but increased CAT activity from the hCS-1 gene hybrid. A slight but significant increase in CAT expression was detected with both genes after dexamethasone treatment. The data indicate that elements present on the hGH-1 and hCS-1 genes' 5'-flanking DNA are required for the efficient expression of these genes in GC cells.  相似文献   

19.
Insulin-like growth factor-I (IGF-I) attenuates GH gene expression by a receptor-mediated mechanism in pituitary cells. We, therefore, isolated neomycin-resistant stable GC cell transfectants over-expressing human IGF-I receptor cDNA (IGFIR-cDNA) cloned in an Rous sarcoma virus-directed expression vector. A transfection control contained the IGFIR-cDNA cloned in the reverse orientation. Southern analysis confirmed incorporation of human IGFIR-cDNA sequences into rat genomic DNA. Immunoprecipitation of metabolically labeled [35S]methionine stably transfected cells revealed a 200-kDa human IGF-I receptor precursor protein. Growth rate and basal GH secretion were not altered in transfected cells. Although transfected and control cells had a similar Kd for IGF-I binding (0.43 and 0.40 nM, respectively), IGF-I-binding sites were induced 17-fold (384,000 vs. 22,000 sites/cell). Treatment of cells with IGF-I (6.5 nM) maximally attenuated GH secretion by 80% compared to 40% attenuation in control cells (P less than 0.0001). Maximal suppression of GH in transfectants occurred within 15 h of treatment, and GH secretion by control cells was only maximally suppressed after 42 h. The ED50 of IGF-I suppression of GH secretion in transfectants after 15 h was 0.5 nM. These results demonstrate that transfectants overexpressing human IGF-I receptor are hyperresponsive to exogenous IGF-I. These data indicate that IGF-I receptor number plays an important role in mediating the signal transduction of IGF-I to the GH gene.  相似文献   

20.
Basic fibroblast growth factor (bFGF; FGF-2) is one of 19 related members of a growth factor family with mitogenic and hormone-regulatory functions. In Xenopus laevis oocytes, a 1.5-kb FGF-2 antisense (GFG) RNA complementary to the third exon and 3'-untranslated region (UTR) of FGF-2 mRNA has been implicated in FGF-2 mRNA editing and stability. The human homolog has been cloned, and we localized this gene by yeast artificial chromosome (YAC), somatic cell, and radiation hybrid panels to the same chromosomal site as FGF-2 (chromosome 4, JO4513 adjacent to D4S430), confirming this as a human endogenous antisense gene. The full-length GFG antisense RNA encodes a 35-kDa protein, which is highly homologous with the MutT family of antimutator nucleosidetriphosphatases (NTPases). We show that human pituitary tumors express FGF-2 and its endogenous antisense partner GFG. While normal pituitary expresses GFG but not FGF-2, pituitary adenomas express FGF-2 and have reduced levels of GFG; aggressive and recurrent adenomas expressed more FGF than GFG mRNA. To examine the effects of this antisense gene in the pituitary, we transfected the pituitary-derived GH4 mammosomatotroph cell line with constructs encoding the full-length human GFG cDNA. Transiently and stably transfected cells expressed the 35-kDa GFG protein that was localized to the cytoplasm. These cells exhibited enhanced PRL expression as documented by transiently transfected PRL-luciferase reporter assay and by endogenous PRL protein. GFG expression in these cells did not alter endogenous FGF-2 expression but increased the proportion of the higher molecular mass 22-kDa form of GH. Moreover, GFG expression inhibited cell proliferation as shown by [(3)H]thymidine incorporation, proliferating cell nuclear antigen (PCNA) nuclear staining, and cell cycle analysis. We conclude that the GFG-encoded protein has divergent hormone-regulatory and antiproliferative actions in the pituitary that are independent of FGF-2 expression. GFG represents a novel mechanism involved in restraining pituitary tumor cell growth while promoting hormonal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号