首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cation-induced gelation of alginates and pectins with various metal ions has been monitored by circular dichroism (c.d.), using a controlled diffusion technique to prepare homogeneous gels in situ. Spectral changes observed with Ca2+ are closely similar to those previously reported for Ca2+-induced dimerisation of alginate poly-l-guluronate and pectin poly-d-galacturonate chain-sequences in solution, and the magnitude of the c.d. change on gel formation is directly related to the proportion of these structural types present. It therefore appears that gel formation does not introduce optical artefacts such as have been reported for particulate systems or biological membranes. Similar spectral changes are observed on gelation of pectin with Sr2+, Ba2+, Cd2+, Ni2+, or Pb2+, but with minor alterations in the wavelength of maximum c.d. change. These subtle differences are interpreted as reflecting variation in binding-site geometry to accommodate ions of different size. Differences in c.d. behaviour with Mg2+, Ca2+, and Sr2+ are far greater for alginate than for pectin, consistent with the greater selectivity of ion-binding. Gelation of both alginate and pectin with Cu2+ is accompanied by spectral changes that are opposite in sign to those observed with other divalent cations, and span a much wider range of wavelengths. This suggests a different and less-specific binding mechanism, consistent with the known lack of selectivity of Cu2+ for different polyuronates. However, for alginate, there is also evidence of some specific interchain chelation. A minor enhancement of alginate c.d. in the presence of K+ ions is attributed to a decrease in charge density of the polymer chain by bound cations, with consequent increase in segment-segment association in solution. The sign and magnitude of this effect confirm the selectivity of polyuronates for divalent cation.  相似文献   

2.
Cohesive gels have been obtained by de-esterification of 1.0 wt % high-methoxy citrus pectin (degree of esterification ≈ 68%) in the presence of Ca2+ cations, using a commercial preparation (NovoShape) of fungal methyl esterase cloned from Aspergillus aculeatus. A convenient rate of network formation (gelation within ∼30 min) was achieved at an enzyme concentration of 0.2 PEU/g pectin. At a Ca2+-concentration of 40 mM and incubation temperature of 20 °C, severe syneresis (>7% of sample mass) was observed, but release of fluid decreased with decreasing concentration of Ca2+ and increasing temperature of incubation, becoming undetectable for 10 mM Ca2+ at 30 °C. Under these conditions, progressive development of solid-like character (storage modulus, G′) was observed during 160 min of enzymic de-esterification, and the mechanical spectrum recorded at the end of the incubation period had the form typical of a biopolymer gel. On subsequent heating to 70 °C, dissociation of the gel network (sigmoidal reduction in G′ and G″) was observed. At or above the midpoint temperature of this melting process (∼50 °C), there was no indication of gel formation on enzymic de-esterification (at 50 or 60 °C). At lower temperatures (20, 30 and 40 °C), the rate of gelation (assessed visually) showed no systematic increase as the incubation temperature was increased towards the temperature-optimum of the enzyme (∼50 °C). This unexpected behaviour is attributed to competition between faster de-esterification and slower formation of Ca2+-induced ‘egg-box’ junctions.  相似文献   

3.
The Arabidopsis genome encodes many secretory guaiacol peroxidases (class III plant peroxidases, EC 1.11.1.7). These higher plant enzymes are found either in the vacuole or in the apoplast, where several functions have been attributed to them. Their localisation within the cell wall matrix is most likely important for their activity. In the present work, a gel consisting of polygalacturonate chains cross-linked by Ca2+ and embedded in polyacrylamide was used to separate proteins from Arabidopsis leaves having an affinity for the Ca2+-mediated conformation of pectin. This chromatographic technique selected a small number of cationic isoperoxidases able to bind to Ca2+-pectate but not to Ca2+-alginate, a polyuronate gel similar to Ca2+-pectate. This result suggested that some of the Arabidopsis peroxidases have an affinity for pectin in vivo. Such a property could allow them to be properly distributed within the cell wall network. In addition, eleven cDNAs encoding an Arabidopsis peroxidase were expressed in the baculovirus-insect cell system. The capacity of the resulting recombinant peroxidases to bind Ca2+-pectate and Ca2+-alginate was also assessed. It appeared that 3 of them exhibited a Ca2+-pectate binding activity that was resistant to the action of NaCl. The binding of these recombinant peroxidases to Ca2+-alginate was much weaker than to Ca2+-pectate, confirming the specificity of the interaction with the pectic structure.  相似文献   

4.
By extracting the cell wall fraction obtained from hypocotyls of soybean seedlings with 1 M NaCl solution, a factor which caused the gelation of the pectin solution was released. Mixed with the extract, the pectin solution increased in viscosity and eventually solidified. The pectin-gelatinizing factor (PGF) was of protein nature and seemed to modify pectin molecules to make them coagulate. The physiological significance of the PGF action was discussed. PGF seemed to be widely distributed among seed plants and to be cell wall-boundin situ.  相似文献   

5.
Restriction endonucleases protect bacterial cells against bacteriophage infection by cleaving the incoming foreign DNA into fragments. In presence of Mg2+ ions, EcoRV is able to cleave the DNA but not in presence of Ca2+, although the protein binds to DNA in presence of both metal ions. We make an attempt to understand this difference using conformational thermodynamics. We calculate the changes in conformational free energy and entropy of conformational degrees of freedom, like DNA base pair steps and dihedral angles of protein residues in Mg2+(A)-EcoRV-DNA complex compared to Ca2+(S)-EcoRV-DNA complex using all-atom molecular dynamics (MD) trajectories of the complexes. We find that despite conformational stability and order in both complexes, the individual degrees of freedom behave differently in the presence of two different metal ions. The base pairs in cleavage region are highly disordered in Ca2+(S)-EcoRV-DNA compared to Mg2+(A)-EcoRV-DNA. One of the acidic residues ASP90, coordinating to the metal ion in the vicinity of the cleavage site, is conformationally destabilized and disordered, while basic residue LYS92 gets conformational stability and order in Ca2+(S) bound complex than in Mg2+(A) bound complex. The enhanced fluctuations hinder placement of the metal ion in the vicinity of the scissile phosphate of DNA. Similar loss of conformational stability and order in the cleavage region is observed by the replacement of the metal ion. Considering the placement of the metal ion near scissile phosphate as requirement for cleavage action, our results suggest that the changes in conformational stability and order of the base pair steps and the protein residues lead to cofactor sensitivity of the enzyme. Our method based on fluctuations of microscopic conformational variables can be applied to understand enzyme activities in other protein-DNA systems.  相似文献   

6.
  • Boron (B) is essential for normal plant growth, including pollen tube growth. B deficiency influences various physiological and metabolic processes in plants. However, the underlying mechanism of B deficiency in pollen tube growth is not sufficiently understood. In the present research, the influence of B deficiency on apple (Malus domestica) pollen tube growth was studied and the possible regulatory mechanism evaluated.
  • Apple pollen grains were cultured under different concentrations of B. Scanning ion‐selective electrode technique, fluorescence labelling and Fourier‐transform infrared (FTIR) analysis were used to detect calcium ion flux, cytosolic Ca2+ concentration ([Ca2+]cyt), actin filaments and cell wall components of pollen tubes.
  • B deficiency inhibited apple pollen germination and induced retardation of tube growth. B deficiency increased extracellular Ca2+ influx and thus led to increased [Ca2+]cyt in the pollen tube tip. In addition, B deficiency modified actin filament arrangement at the pollen tube apex. B deficiency also altered the deposition of pollen tube wall components. Clear differences were not observed in the distribution patterns of cellulose and callose between control and B deficiency treated pollen tubes. However, B deficiency affected distribution patterns of pectin and arabinogalactan proteins (AGP). Clear ring‐like signals of pectins and AGP on control pollen tubes varied according to B deficiency. B deficiency further decreased acid pectins, esterified pectins and AGP content at the tip of the pollen tube, which were supported by changes in chemical composition of the tube walls.
  • B appears to have an active role in pollen tube growth by affecting [Ca2+]cyt, actin filament assembly and pectin and AGP deposition in the pollen tube. These findings provide valuable information that enhances our current understanding of the mechanism regulating pollen tube growth.
  相似文献   

7.
The kinetics of the gelation process that occurs upon warming cold platelet extracts were studied using a sensitive rheometer. At micromolar or less free Ca2+ concentrations and in the presence of 1 mM ATP, the gel rigidity curves showed several peaks, indicating that platelet extract proteins went through network assembling/disassembling cycles during gelation. The gelation kinetics were accelerated by increasing the free Ca2+ concentration up to about 2 μM. At 4–15 μM free Ca2+, the gelation cycles were completely abolished except for the first peak. The gelation process became one of monotonically increasing elastic modulus at millimolar free Ca2+ concentrations. Trifluoperazine (50 μM), a calmodulin inhibitor, did not affect gelation at micromolar free Ca2+ concentrations. Except for the first gelation step, which was completed within 5 min after warming, the rest of the gelation process was found to be affected by K+, ATP, cytochalasin E and colchicine. K+ at concentrations higher than 10 mM retarded the gelation kinetics. Extracts prepared with low (0.1 mM) ATP content showed impaired gelations, and this was partially reversed by adding 1 mM ATP, but not 1 mM adenylylimidodiphosphate (p[NH]ppA). Both cytochalasin E (1 μM) and colchicine (1 mM) interfered with the gelation process.  相似文献   

8.
In the accompanying paper (Morris et al., 1982) we present evidence of Ca2+-induced association of poly-d-galacturonate sequences from pectin into dimers of 21 chain symmetry, with co-operative (“egg-box”) binding of Ca2+ on specific sites along the interior faces of each chain. We now investigate the role in calcium pectate gel networks of other structural features, in particular methyl esterification and 1,2-linked l-rhamnosyl residues in the polymer backbone. Acid hydrolysis of citrus, apple and sunflower pectins gave polygalacturonate blocks with a relatively narrow molecular weight distribution, and average chainlength of ~25 residues in each case. Since the known relative stabilities of glycosidic linkages would lead to chain cleavage predominantly at l-rhamnose, this result indicates that the length of polygalacturonate sequences between rhamnose interruptions is approximately constant within and between the pectins studied. Calcium pectate gel strength is reduced dramatically by the incorporation of these chain segments when they are de-esterified, but not when they are esterified. This interference with the development of a network structure that resists applied stress, provides further support for our model of junction zone formation from sequences of contiguous deesterified residues, with Ca2+-mediated chain dimers providing the primary associations that can offer resistance to deformation.Samples with different levels and patterns of esterification were prepared by enzymic (blockwise) and chemical (random) de-esterification of almost fully methyl esterified pectin. In the former series, the extent of Ca2+ binding (as monitored by circular dichroism) increased almost linearly with the fraction of free carboxyl groups, whereas the latter showed a non-linear relationship of a form consistent with the requirement of this binding for blocks of contiguous non-esterified residues and, in the presence of excess univalent cations, binding was negligible when more than ~40% of the carboxyl groups were esterified. Statistical calculations of sequence length distribution at different degrees of random de-esterification show the best fit with experimental data when binding is assumed to require sequences with seven or more consecutive free carboxyl groups along the participating face of the chain. For 21 chain symmetry, this corresponds to a sequence length of 14 residues, in excellent agreement with previous independent studies of Ca2+ binding to oligogalacturonates.In the absence of competing univalent counterions, circular dichroism changes are similar in form but so large in magnitude that site-binding of Ca2+ must now go beyond the half-stoichiometry at which it is arrested in their presence. Ca2+ binding monitored by circular dichroism, and gel strength (yield stress) measured mechanically, both show a similar dependence on the pattern as well as the level of esterification, as expected for network formation by co-operative binding of Ca2+ within interchain junction zones.To fit this binding data quantitatively, it is necessary to postulate a two-stage process. (1) Initial dimerization, probably corresponding to the “strong associations” indicated by evidence from competitive inhibition (see above), for which a critical minimum sequence of seven residues is again required but esterified residues can now be accommodated within individual sites provided that they are paired with a free carboxylate on the complementary chain. (2) Subsequent Ca2+-induced aggregation of these preformed dimers, which can occur irrespective of the pattern of esterification on the external faces; the evidence from mechanical measurements shows that these contribute little to gel strength at high stress.  相似文献   

9.
An exopolygalacturonase (exoPG) and an exopolymethylgalacturonase (exoPMG) produced by Sclerotinia sclerotiorum have been purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. The exoPG and the exoPMG were purified 66- and 50-fold, respectively, by using a series of separation procedures that included ammonium sulfate precipitation and gel chromatography. Molecular masses of the native proteins were 68 kDa for exoPG and 140 kDa for exoPMG. The pH optima of the enzymes were about pH 5, and their optimum temperature was 45°C. Activities of both enzymes were inhibited by Hg2+, Zn2+, Cu2+, and p-chloromercuribenzoate. ExoPMG activity, in contrast to exoPG activity, was stimulated by Mn2+ and Co2+. ExoPMG hydrolyzed only citrus pectin, while exoPG degraded sodium polygalacturonate and, to a lesser extent, citrus pectin. The exo mode of action of the enzymes was revealed by thin-layer chromatography of substrate hydrolysates. Antibodies raised against each purified protein exhibited no cross-reaction, thus confirming the biochemical specificities of the enzymes.  相似文献   

10.
The structure of a pectin network requires both calcium (Ca2+) and boron (B). Ca2+ is involved in crosslinking pectic polysaccharides and arbitrarily induces the formation of an “egg-box” structure among pectin molecules, while B crosslinks rhamnogalacturonan II (RG-II) side chain A apiosyl residues in primary cell walls to generate a borate-dimeric-rhamnogalacturonan II (dRG-II-B) complex through a boron-bridge bond, leading to the formation of a pectin network. Based on recent studies of dRG-II-B structures, a hypothesis has been proposed suggesting that Ca2+is a common component of the dRG-II-B complex. However, no in vivo evidence has addressed whether B affects the stability of Ca2+ crosslinks. Here, we investigated the L-fucose-deficient dwarf mutant mur1, which was previously shown to require exogenous B treatment for phenotypic reversion. Imbibed Arabidopsis thaliana seeds release hydrated polysaccharides to form a halo of seed mucilage covering the seed surface, which consists of a water-soluble outer layer and an adherent inner layer. Our study of mur1 seed mucilage has revealed that the pectin in the outer layer of mucilage was relocated to the inner layer. Nevertheless, the mur1 inner mucilage was more vulnerable to rough shaking or ethylene diamine tetraacetic acid (EDTA) extraction than that of the wild type. Immunolabeling analysis suggested that dRG-II-B was severely decreased in mur1 inner mucilage. Moreover, non-methylesterified homogalacturonan (HG) exhibited obvious reassembly in the mur1 inner layer compared with the wild type, which may imply a possible connection between dRG-II-B deficiency and pectin network transformation in the seed mucilage. As expected, the concentration of B in the mur1 inner mucilage was reduced, whereas the distribution and concentration of Ca2+in the inner mucilage increased significantly, which could be the reason why pectin relocates from the outer mucilage to the inner mucilage. Consequently, the disruption of B bridges appears to result in the extreme sensitivity of the mur1 mucilage pectin complex to EDTA extraction, despite the reinforcement of the pectin network by excessive Ca2+. Therefore, we propose a hypothesis that B, in the form of dRG-II-B, works together with Ca2+to maintain pectin network crosslinks and ultimately the mucilage ultrastructure in seed mucilage. This work may serve to complement our current understanding of mucilage configuration.  相似文献   

11.
The mechanism of association of pectin by calcium ions was studied to elucidate the gelling process. The molecular weight and size were determined by light scattering measurements on samples of pectin demethylated in gradation (ELM-pectin) by pectinesterase from Aspergillus japonicus, acid demethylated pectin (CLM-pectin), and sodium polygalacturonic acid (PGA). The molecular size of ELM-pectin which was prepared from identical materials increased quantitatively as demethylation progressed. The molecular size of CLM-pectin and PGA was larger than ELM-pectin even though the methoxyl content was similar. This probably resulted from differences in molecular structure. When Ca2+ was added to ELM-pectin, as demethylation progressed, molecular weight increased due to cross-linking induced by Ca2 + ; however, the increase was small, when Ca2+ was added to CLM-pectin, molecular weight increased greatly; however, the molecular size was small, and a slight contraction of molecular was caused by cross-linking, Ca2+ addition to PGA resulted in enhancement of phenomena observed with CLM-pectin.  相似文献   

12.
La3+ stimulate the activity of calcineurin in two different ways   总被引:1,自引:0,他引:1  
It is well known that the activity of calcineurin (CaN) could be modulated by several transitional metal ions. In the present work, the effects of a calcium analog, lanthanum ion (La3+), on the activity of CaN were studied. It was found that La3+ exerted multiple effects on CaN activity. La3+ could stimulate CaN in the absence of calmodulin (CaM); whereas at low concentrations of La3+, there was a slight inhibition of activation of CaN in the presence of CaM. Competitive experiments and limited trypsin proteolysis confirmed that La3+ did not act on the catalytic core of CaN, but exerted its effect through direct action on the CaN regulatory domain similar to Mg2+. In activity titration and spot blotting studies, La3+-containing CaM complexes were less effective in stimulating CaN than Ca2+ or Mn2+-containing CaM; however, the binding affinity of these metal–CaM complexes to CaN was similar. These effects of La3+ on CaN activity are unique among metal ions and may provide clues to understand the biological effects of La3+.  相似文献   

13.
The activity of phosphodiesterase (“Ca2+ plus Mg2+-dependent” phosphodiesterase) of a preparation from brain was found to depend on the presence of both Ca2+ and a protein factor called modulator. It was shown by gel filtration that the active enzyme-modulator complex (MW, about 200,000) was formed from the modulator (MW, 28,000) and an inactive enzyme (MW, about 150,000) in the presence of Ca2+. When EGTA was added, this active enzyme-modulator complex dissociated into inactive enzyme and modulator. These results, together with the finding of Teo and Wang that Ca2+ binds to the modulator, could explain the stimulatory effect of Ca2+ on this enzyme as follows: The “Ca2+ plus Mg2+-dependent” phosphodiesterase may exist as the inactive free form in equilibrium with the active enzymemodulator (Ca2+) complex, and Ca2+, through binding to the modulator, may shift the equilibrium towards formation of the active enzyme-modulator (Ca2+) complex, thereby increasing the activity of the mixture. On decreasing the concentration of Ca2+, the process is reversible.  相似文献   

14.
  • 1.1. As reported previously (Hopper and Robinson, 1990; Int. J. Biochem. 22, 1165–1170) the sea urchin extraembryonic coat protein hyalin undergoes a Ca2+-induced self-association into an insoluble gel (gelation) in the presence of Mg2+ and/or NaCl.
  • 2.2. A 275 kDa peptide fragment, generated by limited tryptic digestion of hyalin, binds Ca2++ but does not undergo gelation in the presence of Ca2+, Mg2+ and NaCl.
  • 3.3. Comparisons between the capacities of hyalin and the 275 kDa peptide fragment to bind Ca2+ indicate that the latter binds 88% less Ca2+ than hyalin.
  • 4.4. However, the presence of Ca2+ alone, at a concentration of 5 mM, protects the 275 kDa peptide fragment from further digestion by trypsin mimicking the effect of this cation in protecting hyalin.
  • 5.5. Gel exclusion Chromatographie analyses of the 275 kDa peptide fragment, both in the presence and absence of 5 mM Ca2+, indicate that this cation does induce self-association of the fragment.
  • 6.6. These results provide information on the organization of the functional domains on hyalin which are required for gel formation.
  相似文献   

15.
Cell walls prepared from onion bulbs were found to exhibit an affinity for Ca++. The adsorption of this ion was enhanced by the action of pectin methylesterase. It was confirmed that Ca++ reacts with two COO“ groups and the corresponding affinity constant, K, was found to be: log K = 4.25. The action of pectin methylesterase had no effect upon K. The cell walls, as prepared, had 25 % of the total COO groups occupied by Ca++, 14 % by Mg++, and 39 % by H+. Treatment with acidified ethanol removed all of the metallic cations. K+ and Mg++ could displace Ca++ from the cell walls. At concentrations from 10−3 to 3 times 10−3 m it required from 4.9 to 13.2 moles of Mg++ to displace one mole of Ca++. For K+ it required 80 moles to displace 1 mole of Ca++ at K+ concentrations from 0.65 × 10−2 to 1.6 × 10−2 M.  相似文献   

16.
The kinetic of thein vitro production of polygalacturonase and pectin lyase of two closely related fungi,Fusarium oxysporum f.sp.lycopersici andF. oxysporum f.sp.radicis-lycopersici, was examined under various culture conditions such as the source of carbon, the pH, and the age of cultures. Over a 5-day period, the production of these enzymes by various isolates of the sameforma specialis (f. sp.) ofF. oxysporum was not significantly different (P ≥ 0.05). However, the amount of the enzymes produced differed markedly between both f. sp. The different carbon sources added to the culture media, such as citrus pectin, apple pectin, tomato cell wall fragments, andd-galacturonic acid, proved to be higher pectinase inducible substrates than sucrose and glucose. For both fungi, polygalacturonase and pectin lyase activities were optimal at pH 5.0 and 8.0, respectively. Furthermore, pectin lyase production had a partial Ca2+ requirement in contrast to polygalacturonase production which was limited by Ca2+. In most experiments performed, the production of polygalacturonase appeared superior withF. oxysporum f.sp.radicislycopersici than withF. oxysporum f.sp.lycopersici. On the other hand, pectin lyase production ofF. oxysporum f.sp.lycopersici was approximately 10-fold greater than that byF. oxysporum f.sp.radicis-lycopersici in media supplemented withd-galacturonic acid.  相似文献   

17.
L-type Ca2+ channels select for Ca2+ over sodium Na+ by an affinity-based mechanism. The prevailing model of Ca2+ channel permeation describes a multi-ion pore that requires pore occupancy by at least two Ca2+ ions to generate a Ca2+ current. At [Ca2+] < 1 μM, Ca2+ channels conduct Na+. Due to the high affinity of the intrapore binding sites for Ca2+ relative to Na+, addition of μM concentrations of Ca2+ block Na+ conductance through the channel. There is little information, however, about the potential for interaction between Na+ and Ca2+ for the second binding site in a Ca2+ channel already occupied by one Ca2+. The two simplest possibilities, (a) that Na+ and Ca2+ compete for the second binding site or (b) that full time occupancy by one Ca2+ excludes Na+ from the pore altogether, would imply considerably different mechanisms of channel permeation. We are studying permeation mechanisms in N-type Ca2+ channels. Similar to L-type Ca2+ channels, N-type channels conduct Na+ well in the absence of external Ca2+. Addition of 10 μM Ca2+ inhibited Na+ conductance by 95%, and addition of 1 mM Mg2+ inhibited Na+ conductance by 80%. At divalent ion concentrations of 2 mM, 120 mM Na+ blocked both Ca2+ and Ba2+ currents. With 2 mM Ba2+, the IC50 for block of Ba2+ currents by Na+ was 119 mM. External Li+ also blocked Ba2+ currents in a concentration-dependent manner, with an IC50 of 97 mM. Na+ block of Ba2+ currents was dependent on [Ba2+]; increasing [Ba2+] progressively reduced block with an IC50 of 2 mM. External Na+ had no effect on voltage-dependent activation or inactivation of the channel. These data suggest that at physiological concentrations, Na+ and Ca2+ compete for occupancy in a pore already occupied by a single Ca2+. Occupancy of the pore by Na+ reduced Ca2+ channel conductance, such that in physiological solutions, Ca2+ channel currents are between 50 and 70% of maximal.  相似文献   

18.
Voltage-gated Ca2+ channels select Ca2+ over competing, more abundant ions by means of a high affinity binding site in the pore. The maximum off rate from this site is ∼1,000× slower than observed Ca2+ current. Various theories that explain how high Ca2+ current can pass through such a sticky pore all assume that flux occurs from a condition in which the pore''s affinity for Ca2+ transiently decreases because of ion interactions. Here, we use rate theory calculations to demonstrate a different mechanism that requires no transient changes in affinity to quantitatively reproduce observed Ca2+ channel behavior. The model pore has a single high affinity Ca2+ binding site flanked by a low affinity site on either side; ions permeate in single file without repulsive interactions. The low affinity sites provide steps of potential energy that speed the exit of a Ca2+ ion off the selectivity site, just as potential energy steps accelerate other chemical reactions. The steps could be provided by weak binding in the nonselective vestibules that appear to be a general feature of ion channels, by specific protein structures in a long pore, or by stepwise rehydration of a permeating ion. The previous ion-interaction models and this stepwise permeation model demonstrate two general mechanisms, which might well work together, to simultaneously generate high flux and high selectivity in single file pores.  相似文献   

19.
In this report, the localization and spatial distribution of two categories of pectin, high and low methylesterified, on the background of dynamic in loosely bound calcium (Ca2+) in Haemanthus hollow style were studied before and after pollination. In the style transmitting tract of unpollinated pistil, mainly high-methylesterified pectins were present, both in the transmitting tract epidermis and in the style canal. After pollination, an increase in the level of two investigated categories of pectin was observed, but the amount of high-methylesterified one in each period of time analyzed was permanently higher. Locally, in the regions of the style canal penetrated by pollen tubes, process of pectin de-esterification was initiated. However, pollination caused an increase of loosely bound Ca2+ level in the style transmitting tract, this process appears to be not linked with pectin de-esterification and possible Ca2+ release after the lysis of Ca2+ cross-linked de-esterified pectin. Instead, it seems to be based on Ca2+ exocytosis from the transmitting tract epidermis cells providing a source of Ca2+ for pollen tubes growing in Haemanthus hollow style.  相似文献   

20.
Anticoagulation factor I (ACF I) from the venom of Agkistrodon acutus forms a 1:1 complex with activated coagulation factor X (FXa) in a Ca2+-dependent fashion and thereby prolongs the clotting time. In the present study, the dependence of the binding of ACF I with FXa on the concentration of Ca2+ ions was quantitatively analyzed by HPLC, and the result showed that the maximal binding of ACF I to FXa occurred at concentration of Ca2+ ions of about 1 mM. The binding of Ca2+ ions to ACF I was investigated by equilibrium dialysis and two Ca2+-binding sites with different affinities were identified. At pH 7.6, the apparent association constants K1 and K2 for these two sites were (1.8 ± 0.5) × 105 and (2.7 ± 0.6) × 104 M–1 (mean ± SE, n = 4), respectively. It was evident from the observation of Ca2+-induced changes in the intrinsic fluorescence of ACF I that ACF I underwent a conformational change upon binding of Ca2+ ions. The occupation of both Ca2+-binding sites in ACF I required a concentration of Ca2+ ions of about 1 mM, which is equal to the effective concentration of Ca2+ ions required both for maximal binding of ACF I to FXa and for the maximal enhancement of emission fluorescence of ACF I. It could be deduced from these results that the occupation of both Ca2+-binding sites in ACF I with Ca2+ ions and subsequent conformational rearrangement might be essential for the binding of ACF I to FXa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号