首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
通过根瘤农杆菌介导法获得菊花转基因植株   总被引:1,自引:0,他引:1  
以带叶茎段为外植体,通过根癌农杆菌介导法,将兔防御素NP-1基因导入菊花品种“001”中。经梯度卡那霉素(kanamycin,Km)筛选,获得了大量Km抗性植株,其中部分Km抗性植株经Southem杂交鉴定为转基因植株。从而成功地建立了菊花遗传转化系统,为菊花分子育种奠定了基础。  相似文献   

2.
ACC脱氨酶基因转化白兰瓜的初步研究   总被引:6,自引:0,他引:6  
用带有ACC脱氨酶基因和卡那霉素抗性基因(NptⅡ,作为报告基因)的工程根癌农杆菌转化白兰瓜子叶。通过组织培养,得到具有卡那霉素(Km)抗性的再生小苗,经NptⅡ报告基因的PCR扩增,ACC脱氨酶基因的Southern点杂交以及ACC脱氨酶活性的生理生化检测可知,ACC脱氨酶基因已成功转入白兰瓜子叶再生小苗,而且不同植株的真叶中表现出不同水平的ACC脱氨酶活性。  相似文献   

3.
甜蛋白基因MBLII对番茄的遗传转化   总被引:1,自引:0,他引:1  
以5~7d龄的 丽春 番茄无菌苗子叶作为外植体,研究了子叶外植体对抗生素卡那霉素的敏感性,抗生素卡那霉素对番茄筛选的适宜浓度为70mg/L.通过根癌农杆菌 Agrobacteriumtumefaciens 介导,成功地进行了马槟榔甜蛋白基因MBLII对番茄的遗传转化,获得转化番茄抗性植株,组织化学法有阳性表现、PCR特异扩增及Southern杂交检测出现特异条带,表明MBLII基因已顺利整合到转基因番茄植株的基因组.  相似文献   

4.
高效烟草遗传转化体系的建立及甜蛋白基因的导入   总被引:12,自引:0,他引:12  
以烟草无菌茁叶片为外植体,通过根癌农杆菌LBA4404介导法,将Thamnatin基因导人烟草中,经梯度卡那霉素(Kana-mycin,Km)筛选,获得可在含75mg/L、100mg/L Km选择生根培养基上再生的抗性植株,其中部分Km抗性植株经PCR检测为阳性,转化率为31.3%,初步鉴定已成功地建立了烟草遗传转化系统,为进一步探讨甜蛋白在植物中的转化和表达情况奠定基础。  相似文献   

5.
甜蛋白基因MBLⅡ对番茄的遗传转化   总被引:2,自引:0,他引:2  
以5~7d龄的“丽春”番茄无菌苗子叶作为外植体,研究了子叶外植体对抗生素卡那霉素的敏感性,抗生素卡那霉素对番茄筛选的适宜浓度为70mg/L。通过根癌农杆菌(Agrobacterium tumefaciens)介导,成功地进行了马槟榔甜蛋白基因MBLⅡ对番茄的遗传转化,获得转化番茄抗性植株,组织化学法有阳性表现、PCR特异扩增及Southern杂交检测出现特异条带,表明MBLⅡ基因已顺利整合到转基因番茄植株的基因组。  相似文献   

6.
影响花椰菜农杆菌介导转化因素的研究   总被引:1,自引:1,他引:0  
以花椰菜赛雪的带柄子叶为外植体,以MS为基本培养基,GUS基因为报告基因,分析了遗传转化过程中的影响因子,如预培养时间、农杆菌菌液浓度、侵染时间、共培养时间、乙酰丁香酮浓度、延迟筛选时间等对外植体瞬间表达和稳定表达的影响。结果显示,以花椰菜的带柄子叶为外植体,预培养2d,农杆菌菌液为OD6000.3~0.4,侵染8min,共培养2d,乙酰丁香酮浓度为100μmol/L,延迟筛选7d,卡那霉素筛选压为5mg/L为最优的遗传转化方案,转化率最高可达35.7%。另外,GUS瞬间表达率和转化率并不存在绝对的相关性,但瞬间表达分析仍然可以作为外源基因进入受体细胞的指示。花椰菜农杆菌介导转化方案的优化研究为芸薹属蔬菜高效遗传转化提供了技术保障,有利于芸薹属蔬菜遗传育种与种质创新研究。  相似文献   

7.
带内含子卡那霉素抗性基因双元载体构建及烟草转化   总被引:1,自引:0,他引:1  
农杆菌介导法是植物基因转化的常用方法,然而由于筛选培养基中常用的抗生素头孢霉素和羧苄青霉素具有类植物激素活性,影响外植体的再生和转化频率。将一个植物的内含子插入卡那霉素抗性基因编码区的N端,合成了一个带内含子的卡那霉素抗性基因。构建带该基因的植物双元表达栽体pYP1202并转化烟草,受侵外植体在含卡那霉素50~200mg/L的选择培养基中抗性芽分化频率不受卡那霉素浓度影响,然而具有GUS活性的转化子占分化芽的比例却随着卡那霉素浓度的增加而升高。当培养基中加入500mg/L羧苄青霉素后受侵外植体产生的抗性芽频率比单一的卡那霉素筛选提高近1倍,高达91.4%,然而具GUS活性的转化子占抗性芽的比例仅有26.7%,在200m/L的卡那霉素筛选下,比例升至93.3%。用带内含子卡那霉素抗性基因构建的植物表达载体转化植物可以减少假抗性芽的产生。  相似文献   

8.
带内含子卡那霉素抗性基因双元载体构建及烟草转化   总被引:12,自引:0,他引:12  
农杆菌介导法是植物基因转化的常用方法,然而由于筛选培养基中常用的抗生素头孢霉素和羧苄青霉素具有类植物激素活性,影响外植体的再生和转化频率,将一个植物的内含子插入卡那霉素抗性基因编码区的N端。合成了一个带内含子的卡那霉素抗性基因。构建带该基因的植物双元表达载体pYP1202并转化烟草,受外植体在含卡那霉素50-200mg/L的选择培养基中抗性芽分化频率不受卡那霉素浓度影响,然而具有GUS活性的转化子占分化芽的比例却随着卡那霉素浓度的增加而升高。当培养基中加入500mg/L羧苄青霉素后受侵外植体产生的抗性芽频率比单一的卡那霉素筛选提高近1倍,高达91.4%,然而具GUS活性的转化子占抗性芽的比较仅有26.7%,在200mg/L的卡那霉素筛选下,比例升至93.3%。用带内含子卡那霉素抗性基因构建的植物表达载体转化植物可以减少假抗性芽的产生。  相似文献   

9.
介绍了卡那霉素在转基因植物筛选中的作用机理及其在植物转化过程和转化后代中的应用现状。卡那霉素不仅在植物转化过程中可起到筛选作用,而且在转化后代中可通过其对后代进行遗传分析和测定种子纯度,同时还可用于后代田间成株的筛选。随着卡那霉素的广泛使用,卡那霉素抗性基因的安全性问题日益受到重视。概述了转基因植物的杂草化、卡那霉素抗性基因的水平扩散、抗生素医疗安全性和食用安全性等方面的研究进展 。  相似文献   

10.
抗虫转基因甘蓝及其后代的研究   总被引:8,自引:0,他引:8  
通过农杆菌感染法将苏云金杆菌杀虫蛋白基因转移进了甘蓝的基因组,带子叶柄的子叶作为外植体与农杆菌共培养.发生在子叶柄基部的愈伤组织在含卡那霉素(Km)15~30mg/L的MS培养基上进行筛选,约5%外植体上的愈伤组织继续长大,当移到含Km和6-BA的分化培养基上时,愈伤组织分化出绿色的芽.将芽分离培养,约80%在加有Km的培养基上被诱导生了根.未转化的对照组织在筛选培养基上不能分化出正常的芽和根系,并且逐渐褐化死亡.小菜粉蝶的幼虫被饲喂以转基因植株的叶片,幼虫出现中毒症状,表现为发育受阻和死亡.约20%受试植物的DNA与苏云金杆菌杀虫蛋白基因探针杂交显阳性带.由转基因植株的种子长成的第2代甘蓝幼苗的卡那霉素抗性和植株的抗小菜粉蝶的活力均符合孟德尔单基因分离规律.  相似文献   

11.
Effects of kanamycin on tissue culture and somatic embryogenesis in cotton   总被引:5,自引:0,他引:5  
The aminoglycoside antibiotic kanamycin was evaluated for its effects on callus initiation from hypocotyl and cotyledon explants, proliferation of non-embryogenic and embryogenic calli, initiation and development of somatic embryos in cotton (Gossypium hirsutum L.). On this basis, the potential use of kanamycin as a selective agent in genetic transformation with the neomycin phosphotransferase II gene as the selective marker gene was evaluated. Cotton cotyledon and hypocotyl explants, and embryogenic calluses were highly sensitive to kanamycin. Kanamycin at 10 mg/L or higher concentrations reduced callus formation, with complete inhibition at 60 mg/L. Kanamycin inhibited embryogenic callus growth and proliferation, as well as the initiation and development of cotton somatic embryos. The sensitivity of embryogenic callus and somatic embryos to kanamycin was different during the initiation and development stages. Kanamycin was considered as a suitable selective agent for transformed callus formation and growth of non-embryogenic callus. Forty to sixty mg/L was the optimal kanamycin concentration for the induction and proliferation of transformed callus. The concentration of kanamycin must be increased (from 50 to 200 mg/L) for the selection of transformation embryogenic callus and somatic embryos. A scheme for selection of transgenic cotton plants when kanamycin is used as the selection agent is discussed.  相似文献   

12.
A protocol was developed for Agrobacterium-mediated genetic transformation of niger [ Guizotia abyssinica (L.f.) Cass.] using hypocotyl and cotyledon explants. Hypocotyls and cotyledons obtained from 7-day-old seedlings were co-cultivated with Agrobacterium tumefaciens strain EHA101/pIG121Hm that harbored genes for beta-glucuronidase (GUS), kanamycin, and hygromycin resistance. Following co-cultivation, the hypocotyl and cotyledon explants were cultivated on MS medium containing 1 mg/l 6-benzylaminopurine (BA) for 3 days in darkness. Subsequently, hypocotyl and cotyledon explants were transferred to selective MS medium containing 1 mg/l BA, 10 mg/l hygromycin, 10 mg/l kanamycin, and 500 mg/l cefotaxime. After 6 weeks, hypocotyls and cotyledons produced multiple adventitious shoot buds, and these explants were subcultured to MS medium containing 1 mg/l BA, 30 mg/l hygromycin, and 30 mg/l kanamycin. After a further 3 weeks, the explants (along with developing shoot buds) were subcultured to MS medium containing 1 mg/l BA, 50 mg/l kanamycin, and 50 mg/l hygromycin for further selection. Transgenic plants were obtained after rooting on half-strength MS medium supplemented with 0.1 mg/l alpha-naphthaleneacetic acid, 50 mg/l kanamycin, and 50 mg/l hygromycin and were confirmed by GUS histochemical assay and polymerase chain reaction analysis. Genomic Southern blot hybridization confirmed the incorporation of the neomycin phosphotransferase II gene into the host genome.  相似文献   

13.
An efficient system for Agrobacterium tumefaciens-mediated transformation of Solanum gilo was established. The marker genes for kanamycin resistance and ß-glucuronidase expression were introduced. A comparison between cotyledon and hypocotyl explants showed that while regeneration was better from hypocotyl explants, cotyledon explants gave better transformation efficiency (46% vs. 32%). Four levels of kanamycin selection (100, 150, 200 and 250 mg/l) were tested for effect on transformation efficiency with each type of explant. Lower levels of kanamycin worked better using cotyledon explants, while higher levels of kanamycin worked better for hypocotyl explants. All nine t0 plants tested for expression of the kan r gene were positive. The progeny of three of these plants showed a pattern of classical Mendelian inheritance (3 to 1) for both the kan r and the ß-glucuronidase genes.Abbreviations MS Murashige and Skoog (1962) medium - 2,4-D 2,4-Dichlorophenoxyacetic acid - NPTII neomycin phosphotransferase - GUS ß-glucuronidase  相似文献   

14.
Significant yield losses in commercial tomato production caused by tomato spotted wilt virus (TSWV) are the reason why we have undertaken studies on resistance to this pathogen. One of the possible sources of resistance can be the incorporation of the nucleoprotein N viral gene by Agrobacterium transformation. The N gene was introduced into three Lycopersicon esculentum forms. Out of the total of 3044 cotyledon explants 14.7% regenerated shoots, but only a few were rooted on medium containing kanamycin. The preliminary analysis indicated that 18 plants are putative transformants.  相似文献   

15.
The kanamycin resistance encoded by the neomycin phosphotransferase II gene (nptII) of transposon Tn5 is widely used in higher plant genetic transformation. The general process of plant transformation using nptII as a selectable marker gene, however, requires selecting kanamycin-resistant plants or tissues in culture. Even with the recently developed vacuum infiltration method for Arabidopsis transformation, the plant culture steps are not completely eliminated in selection for kanamycin-resistant transformants. The herbicide resistance genes, such as bar, which provides resistance to bialaphos, allow Arabidopsis transformation to become a true non-culture procedure. In this report, we assessed the feasibility of applying kanamycin as a spray in selecting for kanamycin-resistant Arabidopsis transformants grown in soil. We find that kanamycin-resistant transformants were effectively selected by spraying soil-grown Arabidopsis seedlings.  相似文献   

16.
苏云金杆菌抗虫基因cryI Ac 转化辣椒的研究   总被引:5,自引:0,他引:5  
通过农杆菌介导法将杀虫结晶蛋白基因cryIAc导入到辣椒子叶外植体中,经卡那霉素筛选、组织化学法检测GUS活性以及PCR、southern杂交分析证实cryIAc基因已整合进辣椒核基因组中。  相似文献   

17.
A procedure for the production of fertile transgenic brassicas via Ri-mediated transformation is reported in this paper. Transgenic hairy root lines were selected for 12 vegetable brassica cultivars and lines representing six varieties: broccoli, Brussels sprouts, cabbage, cauliflower, rapid-cycling (allBrassica oleracea) and Chinese cabbage (B. campestris). Leaf explants or petioles of intact cotyledons were co-cultivated withAgrobacterium strain A4T harbouring various binary vectors. The T-DNA region of all binary vectors contained a neomycin phosphotransferase II gene for kanamycin resistance, in addition to other genes. Hairy root lines grew prolifically on hormone-free medium containing kanamycin. Transgenic shoots were regenerated from all cultivars either spontaneously or after transfer of hairy roots to a hormone-containing medium. Southern analysis confirmed that the plants were transgenic. Plants from all brassica types were successfully transferred to greenhouse conditions. Plants were fertile and segregation analysis confirmed transmission of traits to progeny.Abbreviations BA 6-Benzylaminopurine - GUS -Glucuronidase - LS Linsmaier and Skoog medium - NAA I-Naphthaleneacetic acid - NPTII Neomycin phosphotransferase II - TDZ thidiazuron  相似文献   

18.
通过农杆菌介导法将杀虫结晶蛋白基因cryIAc导入到辣椒子叶外植体中,经卡那霉素筛选、组织化学法检测GUS活性以及PCR、Southern杂交分析证实cryIAc基因已整合进辣椒核基因组中。  相似文献   

19.
Cotton (Gossypium hirsutum L.) cotyledon tissues have been efficiently transformed and plants have been regenerated. Cotyledon pieces from 12-day-old aseptically germinated seedlings were inoculated with Agrobacterium tumefaciens strains containing avirulent Ti (tumor-inducing) plasmids with a chimeric gene encoding kanamycin resistance. After three days cocultivation, the cotyledon pieces were placed on a callus initiation medium containing kanamycin for selection. High frequencies of transformed kanamycin-resistant calli were produced, more than 80% of which were induced to form somatic embryos. Somatic embryos were germinated, and plants were regenerated and transferred to soil. Transformation was confirmed by opine production, kanamycin resistance, immunoassay, and DNA blot hybridization. This process for producing transgenic cotton plants facilitates transfer of genes of economic importance to cotton.  相似文献   

20.
Transgenic muskmelon (Cucumis melo L.) plants were produced efficiently by inoculating cotyledon explants with Agrobacterium tumefaciens strain LBA4404 bearing a Ti plasmid with the NPT II gene for kanaymcin resistance. After co-cultivation for three days, expiants were transferred to melon regeneration medium with kanamycin to select for transformed tissue. Shoot regeneration occurred within 3–5 weeks; excised shoots were rooted on medium containing kanamycin before transferring to soil. Morphologically normal plants were produced in three months. Southern blot analysis confirmed that ca. 85% of the regenerated plants contained the NPT gene. Dot blot analysis and leaf callus assay of progeny of transgenic plants verified transmission of the introduced gene(s) to the next generation. Factors affecting transformation efficiency are discussed.Abbreviations ABA abscisic acid - BAP 6-benzylaminopurine - IAA indole 3 acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - NPT II neomycin phosphotransferase II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号