首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Streptococcus suis is a major swine pathogen worldwide that causes meningitis, septicemia, arthritis, and endocarditis. Using animal models, a surface-associated subtilisin-like protease (SspA) has recently been shown to be an important virulence factor for S. suis. In this study, we hypothesized that the S. suis SspA subtilisin-like protease may modulate cytokine secretion by macrophages thus contributing to the pathogenic process of meningitis.  相似文献   

2.

Background

Streptococcus suis can cause severe systemic infection in adults exposed to infected pigs or after consumption of undercooked pig products. S. suis is often misdiagnosed, due to lack of awareness and improper testing. Here we report the first fifty cases diagnosed with S. suis infection in northern Viet Nam.

Methodology/Principal Findings

In 2007, diagnostics for S. suis were set up at a national hospital in Hanoi. That year there were 43 S. suis positive cerebrospinal fluid samples, of which S. suis could be cultured in 32 cases and 11 cases were only positive by PCR. Seven patients were blood culture positive for S. suis but CSF culture and PCR negative; making a total of 50 patients with laboratory confirmed S. suis infection in 2007. The number of S. suis cases peaked during the warmer months.

Conclusions/Significance

S. suis was commonly diagnosed as a cause of bacterial meningitis in adults in northern Viet Nam. In countries where there is intense and widespread exposure of humans to pigs, S. suis can be an important human pathogen.  相似文献   

3.

Background  

Streptococcus suis is a major swine pathogen and zoonotic agent that mainly causes septicemia, meningitis, and endocarditis. It has recently been suggested that proteinases produced by S. suis (serotype 2) are potential virulence determinants. In the present study, we screened a S. suis mutant library created by the insertion of Tn917 transposon in order to isolate a mutant deficient in a cell surface proteinase. We characterized the gene and assessed the proteinase for its potential as a virulence factor.  相似文献   

4.
《PloS one》2009,4(7)

Background

Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood.

Methodology/Principal Findings

The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, ∼40% of the ∼2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three ∼90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors.

Conclusions/Significance

The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.  相似文献   

5.

Background

Infections with gastric Helicobacter spp. are associated with gastritis, peptic ulceration, and malignancies. Helicobacter pylori is the most prevalent Helicobacter species colonizing the human stomach. Other gastric non‐H. pylori helicobacters (NHPHs) have been described in 0.2%‐6% of human patients with gastric disorders. Nevertheless, due to difficulties in the diagnosis of NHPH infections and lack of routine screening, this is most likely an underestimation of their true prevalence. To the best of our knowledge, no studies have been performed in the presence of Helicobacter spp. in children suffering from gastric disorders in Southern Turkey.

Materials and methods

In total, 110 children with gastric complaints were examined at the Cukurova University Balcali hospital, Turkey. Gastroscopy was performed to evaluate the presence of gastric mucosal lesions. Biopsies of the pyloric gland zone were taken for histopathological analysis, rapid urease testing, and presence of Helicobacter spp. DNA by PCR.

Results

Based on the PCR results, the prevalence of Helicobacter spp. was 32.7% (36/110). H. pylori was found in 30.9% (34/110), H. suis in 1.8% (2/110), and H. heilmannii/H. ailurogastricus in 0.9% (1/110) of the human patients. A mixed infection with H. pylori and H. suis was present in one patient. The presence of mucosal abnormalities, such as nodular inflammation, ulceration, and hyperemia, as well as gastritis, was significantly higher in Helicobacter spp. positive patients.

Conclusion

Helicobacter pylori, H. suis, and H. heilmannii/H. ailurogastricus were present in children with gastric complaints. Infection with these pathogens may be involved in the development of gastritis and ulceration.  相似文献   

6.

Background  

In prokaryotes, the ureases are multi-subunit, nickel-containing enzymes that catalyze the hydrolysis of urea to carbon dioxide and ammonia. The Brucella genomes contain two urease operons designated as ure1 and ure2. We investigated the role of the two Brucella suis urease operons on the infection, intracellular persistence, growth, and resistance to low-pH killing.  相似文献   

7.

Background  

Mycoplasma suis belongs to a group of highly specialized hemotrophic bacteria that attach to the surface of host erythrocytes. Hemotrophic mycoplasmas are uncultivable and the genomes are not sequenced so far. Therefore, there is a need for the clarification of essential metabolic pathways which could be crucial barriers for the establishment of an in vitro cultivation system for these veterinary significant bacteria.  相似文献   

8.

Background  

Lawsonia intracellularis is a common cause of chronic diarrhoea and poor performance in young growing pigs. Diagnosis of this obligate intracellular bacterium is based on the demonstration of the microbe or microbial DNA in tissue specimens or faecal samples, or the demonstration of L. intracellularis-specific antibodies in sera. The aim of the present study was to evaluate a blocking ELISA in the detection of serum antibodies to L. intracellularis, by comparison to the previously widely used immunofluorescent antibody test (IFAT).  相似文献   

9.

Background  

The sequenced genomes of the Brucella spp. have two urease operons, ure-1 and ure-2, but there is evidence that only one is responsible for encoding an active urease. The present work describes the purification and the enzymatic and phylogenomic characterization of urease from Brucella suis strain 1330. Additionally, the urease reactivity of sera from patients diagnosed with brucellosis was examined.  相似文献   

10.

Background

Streptococcus suis infection, an emerging zoonosis, is an increasing public health problem across South East Asia and the most common cause of acute bacterial meningitis in adults in Vietnam. Little is known of the risk factors underlying the disease.

Methods and Findings

A case-control study with appropriate hospital and matched community controls for each patient was conducted between May 2006 and June 2009. Potential risk factors were assessed using a standardized questionnaire and investigation of throat and rectal S. suis carriage in cases, controls and their pigs, using real-time PCR and culture of swab samples. We recruited 101 cases of S. suis meningitis, 303 hospital controls and 300 community controls. By multivariate analysis, risk factors identified for S. suis infection as compared to either control group included eating “high risk” dishes, including such dishes as undercooked pig blood and pig intestine (OR1 = 2.22; 95%CI = [1.15–4.28] and OR2 = 4.44; 95%CI = [2.15–9.15]), occupations related to pigs (OR1 = 3.84; 95%CI = [1.32–11.11] and OR2 = 5.52; 95%CI = [1.49–20.39]), and exposures to pigs or pork in the presence of skin injuries (OR1 = 7.48; 95%CI = [1.97–28.44] and OR2 = 15.96; 95%CI = [2.97–85.72]). S. suis specific DNA was detected in rectal and throat swabs of 6 patients and was cultured from 2 rectal samples, but was not detected in such samples of 1522 healthy individuals or patients without S. suis infection.

Conclusions

This case control study, the largest prospective epidemiological assessment of this disease, has identified the most important risk factors associated with S. suis bacterial meningitis to be eating ‘high risk’ dishes popular in parts of Asia, occupational exposure to pigs and pig products, and preparation of pork in the presence of skin lesions. These risk factors can be addressed in public health campaigns aimed at preventing S. suis infection.  相似文献   

11.
12.
Hu P  Yang M  Zhang A  Wu J  Chen B  Hua Y  Yu J  Chen H  Xiao J  Jin M 《PloS one》2011,6(9):e24988

Background

Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges.

Results

In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance.

Conclusions

Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61.  相似文献   

13.
Streptococcus suis is a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. Zoonotic S. suis infections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease of S. suis that exclusively cleaves porcine IgM and represents the first virulence factor described, linking S. suis to pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease of S. suis that exclusively targets porcine IgG. This enzyme, designated IgdE for immunoglobulin G-degrading enzyme of S. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that all S. suis strains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressed in vivo during infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target.  相似文献   

14.
【目的】猪链球菌(Streptococcus suis)是猪的重要病原菌,同时也是人畜共患病原。猪的扁桃体是猪链球菌主要定殖部位之一,是易感猪和人的重要传染源。因此,对屠宰场健康猪进行猪链球菌流行病学调查,具有重要的公共卫生学意义。【方法】本研究自2020年至2021年,从浙江某市屠宰场采集健康猪扁桃体样品,分离鉴定猪链球菌,采用血清型特异性PCR法分型,通过耐药基因检测、药敏试验、斑马鱼毒力实验分析其耐药及致病特征。【结果】131份健康猪扁桃体样品猪链球菌阳性率为62.59%(82/131),共分离猪链球菌68株,其中16型分离率最高,占比16.18%(11/68),其次为31型(11.76%,8/68)、9型(7.35%,5/68)、3型(7.35%,5/68)等。含2种及以上血清型的扁桃体样品占15.85%(13/82)。药敏试验表明,分离株主要对林可酰胺类(100%,68/68)、大环内酯类(98.53%,67/68)、四环素类(100%,68/68)抗生素耐药,所有菌株均属于多药耐药。值得关注的是,有18株菌对青霉素耐药、3株菌对头孢噻肟耐药、2株菌对利福平耐药、11株菌对利...  相似文献   

15.

Background

Non‐Helicobacter pylori helicobacters (NHPHs) besides H. pylori infect human stomachs and cause chronic gastritis and mucosa‐associated lymphoid tissue lymphoma. Cholesteryl‐α‐glucosides have been identified as unique glycolipids present in H. pylori and some Helicobacter species. Cholesterol‐α‐glucosyltransferase (αCgT), a key enzyme for the biosynthesis of cholesteryl‐α‐glucosides, plays crucial roles in the pathogenicity of H. pylori. Therefore, it is important to examine αCgTs of NHPHs.

Materials and Methods

Six gastric NHPHs were isolated from Japanese patients and maintained in mouse stomachs. The αCgT genes were amplified by PCR and inverse PCR. We retrieved the αCgT genes of other Helicobacter species by BLAST searches in GenBank.

Results

αCgT genes were present in most Helicobacter species and in all Japanese isolates examined. However, we could find no candidate gene for αCgT in the whole genome of Helicobacter cinaedi and several enterohepatic species. Phylogenic analysis demonstrated that the αCgT genes of all Japanese isolates show high similarities to that of a zoonotic group of gastric NHPHs including Helicobacter suis, Helicobacter heilmannii, and Helicobacter ailurogastricus. Of 6 Japanese isolates, the αCgT genes of 4 isolates were identical to that of H. suis, and that of another 2 isolates were similar to that of H. heilmannii and H. ailurogastricus.

Conclusions

All gastric NHPHs examined showed presence of αCgT genes, indicating that αCgT may be beneficial for these helicobacters to infect human and possibly animal stomachs. Our study indicated that NHPHs could be classified into 2 groups, NHPHs with αCgT genes and NHPHs without αCgT genes.  相似文献   

16.

Background

Streptococcus suis is an important infectious agent for pigs and occasionally for humans. The host innate immune system plays a key role in preventing and eliminating S. suis infections. One important constituent of the innate immune system is the protein lysozyme, which is present in a variety of body fluids and immune cells. Lysozyme acts as a peptidoglycan degrading enzyme causing bacterial lysis. Several pathogens have developed mechanisms to evade lysozyme-mediated killing. In the present study we compared the lysozyme sensitivity of various S. suis isolates and investigated the molecular basis of lysozyme resistance for this pathogen.

Results

The lysozyme minimal inhibitory concentrations of a wide panel of S. suis isolates varied between 0.3 to 10 mg/ml. By inactivating the oatA gene in a serotype 2 and a serotype 9 strain, we showed that OatA-mediated peptidoglycan modification partly contributes to lysozyme resistance. Furthermore, inactivation of the murMN operon provided evidence that additional peptidoglycan crosslinking is not involved in lysozyme resistance in S. suis. Besides a targeted approach, we also used an unbiased approach for identifying factors involved in lysozyme resistance. Based on whole genome comparisons of a lysozyme sensitive strain and selected lysozyme resistant derivatives, we detected several single nucleotide polymorphisms (SNPs) that were correlated with the lysozyme resistance trait. Two SNPs caused defects in protein expression of an autolysin and a capsule sugar transferase. Analysis of specific isogenic mutants, confirmed the involvement of autolysin activity and capsule structures in lysozyme resistance of S. suis.

Conclusions

This study shows that lysozyme resistance levels are highly variable among S. suis isolates and serotypes. Furthermore, the results show that lysozyme resistance in S. suis can involve different mechanisms including OatA-mediated peptidolycan modification, autolysin activity and capsule production.  相似文献   

17.

Background

Streptococcus suis is the most common cause of meningitis in pork consuming and pig rearing countries in South-East Asia. We performed a systematic review of studies on S. suis meningitis to define the clinical characteristics, predisposing factors and outcome.

Methodology

Studies published between January 1, 1980 and August 1, 2015 were identified from main literature databases and reference lists. Studies were included if they were written in West-European languages and described at least 5 adult patients with S. suis meningitis in whom at least one clinical characteristic was described.

Findings

We identified 913 patients with S. suis meningitis included in 24 studies between 1980 and 2015. The mean age was 49 years and 581 of 711 patients were male (82%). Exposure to pigs or pork was present in 395 of 648 patients (61%) while other predisposing factors were less common. 514 of 528 patients presented with fever (97%), 429 of 451 with headache (95%), 462 of 496 with neck stiffness (93%) and 78 of 384 patients (20%) had a skin injury in the presence of pig/pork contact. The case fatality rate was 2.9% and hearing loss was a common sequel occurring in 259 of 489 patients (53%). Treatment included dexamethasone in 157 of 300 (52%) of patients and was associated with reduced hearing loss in S. suis meningitis patients included in a randomized controlled trial.

Conclusion

S. suis meningitis has a clear association with pig and pork contact. Mortality is low, but hearing loss occurs frequently. Dexamethasone was shown to reduce hearing loss.  相似文献   

18.
This study describes a non‐Helicobacter (H.) pylori Helicobacter (NHPH) infection in a pig veterinarian. The patient suffered from reflux esophagitis and general dyspeptic symptoms and was referred to the hospital for upper gastrointestinal endoscopy. Histologic examination of corpus and antrum biopsies revealed a chronic gastritis. Large spiral‐shaped non‐H. pylori helicobacters could be visualized and were identified as H. suis by PCR. The patient was treated with a triple therapy, consisting of amoxicillin, clarithromycin, and pantoprazole for 10 days. Successful eradication was confirmed after a follow‐up gastrointestinal endoscopy and PCR 10 weeks after treatment. A mild chronic gastritis was, however, still observed at this point in time. This case report associates porcine H. suis strains with gastric disease in humans, thus emphasizing the zoonotic importance of H. suis bacteria from pigs.  相似文献   

19.
Aim: To develop a TaqMan probe‐based, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of Mycoplasma suis in the blood of pigs. Methods and Results: Primers and probes specific to Myc. suis 16S rRNA gene were designed. The qPCR assay’s specificity, detection limit, intra‐ and inter‐assay variability were evaluated and its performance was compared with a Myc. suis conventional PCR assay (cPCR). Blood of two experimentally infected pigs, 40 Indiana pigs, 40 Brazilian sows and 28 peccaries were tested. The assay detected as few as ten copies of Myc. suis plasmids and was 100‐fold more sensitive than the cPCR. No cross‐reactivity with nontarget pig mycoplasmas was observed. An average of 1·62 × 1011 and 2·75 × 108 target copies ml?1 of blood were detected in the acutely and chronically infected pigs, respectively. Three (7·5%) pigs and 32 (80·0%) sows were positive while all peccaries were negative for Myc. suis. Conclusion: The developed qPCR assay is highly sensitive and specific for Myc. suis detection and quantification. Significance and Impact of the Study: TaqMan qPCR is an accurate and quick test for detection of Myc. suis infected pigs, which can be used on varied instrumentation platforms.  相似文献   

20.

Background  

Streptococcus suis serotype 2 (SS2) is a zoonotic agent that causes death and disease in both humans and swine. A better understanding of SS2-host molecular interactions is crucial for understanding SS2 pathogenesis and immunology. Conventional genetic and biochemical approaches used to study SS2 virulence factors are unable to take into account the complex and dynamic environmental stimuli associated with the infection process. In this study, in vivo-induced antigen technology (IVIAT), an immunoscreening technique, was used to identify the immunogenic bacterial proteins that are induced or upregulated in vivo during SS2 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号