共查询到20条相似文献,搜索用时 0 毫秒
1.
Yin Cai Galina K Sukhova Hoi Kin Wong Aimin Xu Vinay Tergaonkar Paul M Vanhoutte Eva Hoi Ching Tang 《Cell cycle (Georgetown, Tex.)》2015,14(22):3580-3592
Repressor activator protein 1 (Rap1) is essential for maintaining telomere length and structural integrity, but it also exerts other non-telomeric functions. The present study tested the hypothesis that Rap1 is released into the cytoplasm and induces production of pro-inflammatory cytokines via nuclear factor kappa B (NFκB) signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions. Western blotting analysis confirmed that Rap1 was present in the cytoplasm of differentiated human monocytic leukemia cells (THP-1, a macrophage-like cell line). Co-immunoprecipitation assay revealed a direct interaction between Rap1 and I kappa B kinase (IKK). Knockdown of Rap1 suppressed lipopolysaccharide-mediated activation of NFκB, and phosphorylation of inhibitor of kappa B α (IκBα) and p65 in THP-1 macrophages. The reduction of NFκB activity was paralleled by a decreased production of NFκB-dependent pro-inflammatory cytokines and an increased expression of IκBα (native NFκB inhibitor) in various macrophage models with pro-inflammatory phenotype, including THP-1, mouse peritoneal macrophages and bone marrow-derived M1 macrophages. These changes were observed selectively in pro-inflammatory macrophages but not in bone marrow-derived M2 macrophages (with an anti-inflammatory phenotype), mouse lung endothelial cells, human umbilical vein endothelial cells or human aortic smooth muscle cells. Immunostaining revealed that Rap1 was localized mainly in macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated with the advancement of the disease process. In pro-inflammatory macrophages, Rap1 promotes cytokine production via NFκB activation favoring a pro-inflammatory environment which may contribute to the development and progression of atherosclerosis. 相似文献
2.
Yang HT Wang Y Zhao X Demissie E Papoutsopoulou S Mambole A O'Garra A Tomczak MF Erdman SE Fox JG Ley SC Horwitz BH 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(4):1989-1996
Although NF-κB1 p50/p105 has critical roles in immunity, the mechanism by which NF-κB1 regulates inflammatory responses is unclear. In this study, we analyzed the gene expression profile of LPS-stimulated Nfkb1(-/-) macrophages that lack both p50 and p105. Deficiency of p50/p105 selectively increased the expression of IFN-responsive genes, which correlated with increased IFN-β expression and STAT1 phosphorylation. IFN Ab-blocking experiments indicated that increased STAT1 phosphorylation and expression of IFN-responsive genes observed in the absence of p50/p105 depended upon autocrine IFN-β production. Markedly higher serum levels of IFN-β were observed in Nfkb1(-/-) mice than in wild-type mice following LPS injection, demonstrating that Nfkb1 inhibits IFN-β production under physiological conditions. TPL-2, a mitogen-activated protein kinase kinase kinase stabilized by association with the C-terminal ankyrin repeat domain of p105, negatively regulates LPS-induced IFN-β production by macrophages via activation of ERK MAPK. Retroviral expression of TPL-2 in Nfkb1(-/-) macrophages, which are deficient in endogenous TPL-2, reduced LPS-induced IFN-β secretion. Expression of the C-terminal ankyrin repeat domain of p105 in Nfkb1(-/-) macrophages, which rescued LPS activation of ERK, also inhibited IFN-β expression. These data indicate that p50/p105 negatively regulates LPS-induced IFN signaling in macrophages by stabilizing TPL-2, thereby facilitating activation of ERK. 相似文献
3.
4.
The interaction of lipopolysaccharide-primed murine peritoneal macrophages with ivermectin, an antiparasite drug which potentiates P2X(4) receptors and dynasore which inhibits the GTPase activity of dynamin, a protein contributing to the internalization of plasma membrane proteins, was tested. Murine peritoneal macrophages express P2X(4) receptors which are mostly intracellular. In cells from P2X(7)-knockout mice (KO mice), 10 μm adenosine triphosphate (ATP) provoked a transient increase of the intracellular concentration of calcium. Ivermectin had no effect by itself but potentiated the increase of the intracellular concentration of calcium by ATP. The combination of ATP plus ivermectin also decreased the intracellular concentration of potassium and promoted the secretion of IL-1β. Concentrations of dynasore above 50?μm affected the integrity of mitochondria (MTT test) and of the plasma membrane (release of lactate dehydrogenase, LDH). At a 10 μm concentration, dynasore had no effect on the responses to ATP and on the internalization of P2X(4) receptors. By itself dynasore promoted the release of potassium and the secretion of IL-1β after activation of caspase-1. In conclusion, our results confirm that ivermectin potentiates the responses coupled to P2X(4) receptors probably by interaction with an allosteric site. We also show that this potentiation triggers the release of IL-1β by macrophages. As opposed to ivermectin, dynasore has no effect on P2X(4) receptors. This drug triggers a potassium efflux via a mechanism which does not involve purinergic receptors and generates, in consequence, the activation of caspase-1 and the secretion of IL-1β. 相似文献
5.
6.
Dong Hyun Lee Yoon Suk Kim Jaewon Lim Yoonjung Cho Byung Chul Jung Cheol-Ho Pan Hyun-Kyung Kim Ki-Jong Rhee 《Genes & genomics.》2013,35(3):405-409
Triglyceride (TG) is known to be associated with inflammatory diseases including atherosclerosis. At the cellular level, TG can act as an immunomodulatory stimulus for macrophages. In this study we show that TG treatment of PMA-differentiated macrophages resulted in down-regulation of MMP-12 expression in a time- and dose-dependent manner. MMP-19 expression was unaffected by TG treatment. Using a variety of chemical inhibitors for cell signaling pathways we demonstrate that TG-induced down-regulation of MMP-12 occurs in part by activation of the NF-κB pathway. Finally, TG treatment of PMA-differentiated macrophages decreased cell migration in a wound healing assay. Taken together our data suggests that one function of TG is to modulate macrophage migration in tissues. 相似文献
7.
Phagocytosis of naturally dying cells usually blocks inflammatory reactions in host cells. We have recently observed that clearance of cells dying through autophagy leads to a pro-inflammatory response in human macrophages. Investigating this response further, we found that during engulfment of MCF-7 or 293T cells undergoing autophagic death, but not apoptotic or anoikic ones, caspase-1 was activated and IL-1β was processed, then secreted in a MyD88-independent manner. Autophagic dying cells were capable of preventing some LPS-induced pro-inflammatory responses, such as TNFα, IL-6 and IL-8 induction, but synergized with LPS for IL-1β production. Caspase-1 inhibition prevented macrophage IL-1β release triggered by the dying cells and also other pro-inflammatory cytokines which were not formed in the presence of IL-1 receptor antagonist anakinra either. IL-1β secretion was also observed using calreticulin knock down or necrostatin treated autophagic MCF-7 cells and it required phagocytosis of the dying cells which led to ATP secretion from macrophages. Blocking K (+) efflux during phagocytosis, the presence of apyrase, adding an antagonist of the P2X7 receptor or silencing the NOD-like receptor protein NALP3 inhibited IL-1β secretion. These data suggest that during phagocytosis of autophagic dying cells ATP, acting through its receptor, initiates K (+) efflux, inflammasome activation and secretion of IL-1β, which initiates further pro-inflammatory events. Thus, autophagic death of malignant cells and their clearance may lead to immunogenic response. 相似文献
8.
High mobility group box chromosomal protein 1 (HMGB-1) is a widely studied, ubiquitous nuclear protein that is present in eukaryotic cells, and plays a crucial role in inflammatory response. However, the effects of HMGB-1 on human synovial fibroblasts are largely unknown. In this study, we investigated the intracellular signaling pathway involved in HMGB-1-induced IL-6 production in human synovial fibroblast cells. HMGB-1 caused concentration- and time-dependent increases in IL-6 production. HMGB-1-mediated IL-6 production was attenuated by receptor for advanced glycation end products (RAGE) monoclonal antibody (Ab) or siRNA. Pretreatment with c-Src inhibitor (PP2), Akt inhibitor and NF-κB inhibitor (pyrrolidine dithiocarbamate and L-1-tosylamido-2-phenylenylethyl chloromethyl ketone) also inhibited the potentiating action of HMGB-1. Stimulation of cells with HMGB-1 increased the c-Src and Akt phosphorylation. HMGB-1 increased the accumulation of p-p65 in the nucleus, as well as NF-κB luciferase activity. HMGB-1-mediated increase of NF-κB luciferase activity was inhibited by RAGE Ab, PP2 and Akt inhibitor or RAGE siRNA, or c-Src and Akt mutant. Our results suggest that HMGB-1-increased IL-6 production in human synovial fibroblasts via the RAGE receptor, c-Src, Akt, p65, and NF-κB signaling pathways. 相似文献
9.
10.
Huang WC Chai CY Chen WC Hou MF Wang YS Chiu YC Lu SR Chang WC Juo SH Wang JY Chang WC 《Cell calcium》2011,50(1):27-35
Histamine, an important chemical mediator, has been shown to regulate inflammation and allergic responses. Stimulation of histamine receptors results in a significant increase in cytoplasmic Ca2+, which could be mediated by inositol trisphosphate (IP3)-dependent store-operated Ca2+ channels (SOC). However, the link between histamine-mediated signaling and activation of inflammatory genes such as cyclooxygenase 2 (COX-2) is still unknown. Our study indicated that the COX-2 protein was highly expressed in human lung cancer cells. Following stimulation with 10 μM of histamine, both store-operated Ca2+ entry (SOCE) and COX-2 gene expression were evoked. Histamine-mediated COX-2 activation can be prevented by 2-APB and SKF-96365, SOC channel inhibitors. In addition, deletion analysis of the COX-2 promoter suggested that the region between −80 bp and −250 bp, which contains NFκB binding sites, is the key element for histamine-mediated signaling. Knocking down ORAI1, one of the essential molecules of store-operated calcium channels, attenuated histamine-mediated COX-2 expression and NFκB activation. These results indicated that ORAI1-mediated NFκB activation was an important signaling pathway, responsible for transmitting histamine signals that trigger inflammatory reactions. 相似文献
11.
12.
13.
Kousei Tsuyuki Gaku Ichinowatari Atsuo Tanimoto Masateru Yamada Hiroshi Yaginuma Kazuo Ohuchi 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2002,1583(1):26-34
As we had found previously that thapsigargin, an endomembrane Ca2+-ATPase inhibitor, induces production of intracellular platelet-activating factor (PAF) [Br. J. Pharmacol. 116 (1995) 2141], we decided to investigate the possible roles of intracellular PAF in nuclear factor (NF)-κB activation of thapsigargin-stimulated rat peritoneal macrophages. When rat peritoneal macrophages were stimulated with thapsigargin, the level of inhibitory protein of NF-κB-α (IκB-α) was decreased and the nuclear translocation of NF-κB was increased. The thapsigargin-induced activation of NF-κB was inhibited by the PAF synthesis inhibitor SK&F 98625 and the PAF antagonist E6123. Structurally unrelated PAF antagonists such as E5880 and L-652,731 also inhibited the thapsigargin-induced activation of NF-κB. Lipopolysaccharide (LPS)-induced activation of NF-κB was also suppressed by these drugs. In a culture of rat peritoneal macrophages, exogenously added PAF did not induce degradation of IκB-α. These findings suggest that the intracellular PAF produced by the stimulation with thapsigargin or LPS is involved in activation of the NF-κB pathway. 相似文献
14.
Ligation of TLR4 with LPS in macrophages leads to the production of proinflammatory cytokines, which are central to eliminate viral and bacterial infection. However, uncontrolled TLR4 activation may contribute to pathogenesis of inflammatory diseases such as septic shock. In this study, we found microRNA-210 was induced in murine macrophages by LPS. Transfection of miR-210 mimics significantly inhibited LPS-induced production of inflammatory cytokines. In contrast, transfection of anti-miR-210 inhibitors increased LPS-induced expression of proinflammatory cytokines. Furthermore, we demonstrated that miR-210 targets NF-κB1. Therefore, our data identify miR-210 as a very important feedback negative regulator for LPS-induced production of proinflammatory cytokines. 相似文献
15.
Tomohiro Morishige Yasuo Yoshioka Aya Tanabe Xinglei Yao Yasuo Tsutsumi Yohei Mukai Shinsaku Nakagawa 《Biochemical and biophysical research communications》2010,392(2):160-74
Although titanium dioxide (TiO2) is widely used, its inhalation can induce inflammatory diseases accompanied by interleukin-1β (IL-1β) production. The particle characteristics of TiO2 are important factors in its biological effects. It is urgently necessary to investigate the relationship between the particle characteristics and biological responses for the development of safe forms of TiO2. Here, we systematically compared the production of IL-1β in response to various forms of TiO2 by macrophage-like human THP-1 cells using various sizes (nano to micro), crystal structures (anatase or rutile), and shapes (spherical or spicular) of TiO2. The production of IL-1β depended dramatically on the characteristics of the TiO2. Notably, smaller anatase and larger rutile particles provoked higher IL-1β production. In addition, IL-1β production depended on active cathepsin B and reactive oxygen species production independent of the characteristics of TiO2. Our results provide basic information for the creation of safe and effective novel forms of TiO2. 相似文献
16.
17.
It has been demonstrated that β-endorphin stimulates the zymosan-induced secretion of reactive oxygen species and suppresses the spontaneous production of IL-1β and IL-10 by murine peritoneal macrophages in vivo. 相似文献
18.
19.
Maki Numazaki Chiaki Kato Yoko Kawauchi Mariko Ishii 《Biochemical and biophysical research communications》2009,386(1):202-206
In this study, we evaluated the signaling ability of SIGNR1 in murine macrophage-like RAW264.7 cells that stably expressed FLAG-tagged SIGNR1 (SIGNR1-FLAG). Cross-linking of SIGNR1-FLAG expressed on the cells by an anti-FLAG antibody induced JNK phosphorylation without induction of phosphorylation of ERK1/2 and p38 MAP kinase, and led to phosphorylations of Src family kinases (SFKs) and Akt. The SIGNR1-FLAG molecules in the cells were found in lipid raft-enriched membrane fractions, and the tyrosine kinases Lyn, Hck, and Fgr co-precipitated with SIGNR1-FLAG in the lipid raft fractions. The antibody-induced JNK phosphorylation was inhibited by inhibitors of SFKs and tyrosine kinases. Furthermore, cross-linking of SIGNR1 led to production of TNF-α, and the JNK inhibitor inhibited the antibody-induced TNF-α production. These results show that cross-linking of SIGNR1 triggers phosphorylation of SFKs, which leads to activation of the JNK pathway and induction of TNF-α production in macrophage-like RAW264.7 cells. 相似文献