首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: Petioles of huge solitary leaves of mature plants of Amorphophallus resemble tree trunks supporting an umbrella-like crown. Since they may be 4 m tall, adaptations to water transport in the petioles are as important as adaptations to mechanical support of lamina. The petiole is a cylindrical shell composed of compact unlignified tissue with a honeycomb aerenchymatous core. In both parts numerous vascular bundles occur, which are unique because of the scarcity of lignified elements. In the xylemic part of each bundle there is a characteristic canal with unlignified walls. The xylem pecularities are described and interpreted. MATERIAL: Vascular bundles in mature petioles of Amorphophallus titanum and A. gigas plants were studied using light and scanning electron microscopy. KEY RESULTS: The xylemic canal represents a file of huge metaxylem tracheids (diameter 55-200 microm, length >30 mm) with unlignified lateral walls surrounded by turgid parenchyma cells. Only their end walls, orientated steeply, have lignified secondary thickenings. The file is accompanied by a strand of narrow tracheids with lignified bar-type secondary walls, which come into direct contact with the wide tracheid in many places along its length. CONCLUSIONS: The metaxylem tracheids in A. petioles are probably the longest and widest tracheids known. Only their end walls have lignified secondary thickenings. Tracheids are long due to enormous intercalary elongation and wide due to a transverse growth mechanism similar to that underlying formation of aerenchyma cavities. The lack of lignin in lateral walls shifts the function of 'pipe walls' to the turgid parenchyma paving the tracheid. The analogy to carinal canals of Equisetum, as well as other protoxylem lacunas is discussed. The stiff partitions between the long and wide tracheids are interpreted as structures similar to the end walls in vessels.  相似文献   

2.
The growth of plants under stable light quality induces long-term acclimation responses of the photosynthetic apparatus. Light can even cause variations depending on the tissue location, as in Arum italicum leaf, where chloroplasts are developed in the lamina and in the entire thickness of the petiole. We addressed the question whether differences in plastids can be characterised in terms of protein–protein interactions in the thylakoid membranes. Thylakoid assembly was studied in the palisade and spongy tissue of the lamina and in the outer parenchyma and inner aerenchyma of the petiole of the mature winter leaf of Arum italicum. The chlorophyll–protein complexes were analysed by means of blue-native-PAGE and fluorescence emission spectra. The petiole chloroplasts differ from those in the lamina in thylakoid composition: (1) reaction centres are scarce, especially photosystem (PS) I in the inner aerenchyma; (2) light-harvesting complex (LHC) II is abundant, (3) the relative amount of LHCII trimers increases, but this is not accompanied by increased levels of PSII–LHCII supercomplexes. Nevertheless, the intrinsic PSII functionality is comparable in all tissues. In Arum italicum leaf, the gradient in thylakoid organisation, which occurs from the palisade tissue to the inner aerenchyma of the petiole, is typical for photosynthetic acclimation to low-light intensity with a high enrichment of far-red light. The results obtained demonstrate a high plasticity of chloroplasts even in an individual plant. The mutual interaction of thylakoid protein complexes is discussed in relation to the photosynthetic efficiency of the leaf parts and to the ecodevelopmental role of light.  相似文献   

3.
Growth, Turgor, Water Potential, and Young's Modulus in Pea Internodes   总被引:1,自引:0,他引:1  
The relations between longitudinal growth, Young's modulus, turgor, water potential, and tissue tensions have been studied on growing internodes of etiolated pea seedlings in an attempt to apply some physical concepts to the growth of a well-known plant material. The modulus has been determined by the resonance frequency method and expressed as Etissue It increases nearly proportional to the turgor pressure and is at water saturation more than 50 times higher than at plasmolysis. Etissue is higher in the epidermis than in the ground parenchyma. Indoleacetic acid causes a decrease in Etissue Other properties have been studied on intact and split segments of internodes in solutions of graded mannitol additions. — The following tentative picture of the normal course of the growth has been obtained. Auxin induces growth both in the periphery (epidermis) and in the central core (parenchyma) under a decrease in Etissue This is followed by an increase of Etissue which is independent of auxin but depending upon the turgor pressure. It is assumed to involve internal structural changes of the cell walls of the type of creep. The rapid growth takes place in a dynamic system with a low water potential despite favourable water conditions. Epidermis and parenchyma grow equally rapid without tissue tensions. — Such can be produced artificially by splitting of segments and water uptake. The parenchyma thereby loses its sensitivity to auxin. This is the background of the split stem test for auxin. — Etissue increases when growth is slowing down, probably owing to both synthesis of wall substance and structural changes within the wall. The cells attain a more static condition with Etissue higher in epidermis than in parenchyma. This leads to the normal tissue tensions. — The result agrees with growth according to the multi-net-principle. The cause of the low water potential and low turgor is discussed with reference to the dynamic nature of both growth and water transport and a probably low matric potential of the streaming water. The decrease in Etissue following auxin addition is small but is the net difference between an auxin-induced decrease and an increase through the assumed creep.  相似文献   

4.
G Qiong  R E Pitt  A Ruina 《Biorheology》1990,27(2):225-240
The effect of intercellular bonding on the stress-strain behavior of soft plant tissue is considered. In our mechanical model, a conglomerate of identical cells is arranged in a regular array. Each cell is pressurized and bonded across flat contact areas with adjacent cells in the direction of the applied load. The cell wall is a finitely-deformed mechanical membrane bounding an incompressible fluid (the cytoplasm). A nonlinear elastic constitutive law is presented that describes data for apple parenchyma. Results show that intercellular bonding has a strong effect on the macroscopic properties of the whole tissue. A larger intercellular contact area increases tissue stiffness and magnifies the effect of initial turgor pressure on tissue stiffness.  相似文献   

5.
An analysis of the mechanics of guard cell motion   总被引:13,自引:0,他引:13  
This paper presents a mechanical analysis of the cellular deformations which occur during the opening and closing of stomata. The aperture of the stomatal pore is shown to be a result of opposing pressures of the guard and adjacent epidermal cells. The analysis indicates that the epidermal cells have a mechanical advantage over the guard cells. With no mechanical advantage, an equal reduction in the turgor pressure of both guard and epidermal cells would have a neglible effect upon stomatal aperture. However, due to the mechanical advantage of the surrounding cells, the stomatal aperture increases with equal reductions in turgor, until the adjacent epidermal cells become flaccid. The minimum diffusion resistance of the pore occurs at this point. Further reductions in guard cell turgor lead to closure of the pore. The analysis further demonstrates how the shape, size, wall thickness and material properties of the guard cell walls influence their behavior.  相似文献   

6.
The mechanical behavior of plant tissues and its dependency on tissue geometry and turgor pressure are analytically dealt with in terms of the theory of cellular solids. A cellular solid is any material whose matter is distributed in the form of beamlike struts or complete “cell” walls. Therefore, its relative density is less than one and typically less than 0.3. Relative density is the ratio of the density of the cellular solid to the density of its constitutive (“cell wall”) material. Relative density depends upon cell shape and the density of cell wall material. It largely influences the mechanical behavior of cellular solids. Additional important parameters to mechanical behavior are the elastic modulus of “cell walls” and the magnitude of internal “cell” pressure. Analyses indicate that two “stiffening” agents operate in natural cellular solids (plant tissues): 1) cell wall infrastructure and 2) the hydrostatic influence of the protoplasm within each cellular compartment. The elastic modulus measured from a living tissue sample is the consequence of both agents. Therefore, the mechanical properties of living tissues are dependent upon the magnitude of turgor pressure. High turgor pressure places cell walls into axial tension, reduces the magnitude of cell wall deformations under an applied stress, and hence increases the apparent elastic modulus of the tissue. In the absence of turgid protoplasts or in the case of dead tissues, the cell wall infrastructure will respond as a linear elastic, nonlinear elastic, or “densifying” material (under compression) dependent upon the magnitude of externally applied stress. Accordingly, it is proposed that no single tangent (elastic) modulus from a stress-strain curve of a plant tissue is sufficient to characterize the material properties of a sample. It is also suggested that when a modulus is calculated that it be referred to as the tissue composite modulus to distinguish it from the elastic modulus of a noncellular solid material.  相似文献   

7.
Carica papaya L. does not contain wood, according to the botanical definition of wood as lignified secondary xylem. Despite its parenchymatous secondary xylem, these plants are able to grow up to 10‐m high. This is surprising, as wooden structural elements are the ubiquitous strategy for supporting height growth in plants. Proposed possible alternative principles to explain the compensation for lack of wood in C. papaya are turgor pressure of the parenchyma, lignified phloem fibres in the bark, or a combination of the two. Interestingly, lignified tissue comprises only 5–8% of the entire stem mass. Furthermore, the phloem fibres do not form a compact tube enclosing the xylem, but instead form a mesh tubular structure. To investigate the mechanism of papaya's unusually high mechanical strength, a set of mechanical measurements were undertaken on whole stems and tissue sections of secondary phloem and xylem. The structural Young's modulus of mature stems reached 2.5 GPa. Since this is low compared to woody plants, the flexural rigidity of papaya stem construction may mainly be based on a higher second moment of inertia. Additionally, stem turgor pressure was determined indirectly by immersing specimens in sucrose solutions of different osmolalities, followed by mechanical tests; turgor pressure was between 0.82 and 1.25 MPa, indicating that turgor is essential for flexural rigidity of the entire stem.  相似文献   

8.
Abstract: Laminae and petioles from mature winter leaves of Arum italicum were studied in order to obtain information on the sun—shade intra-tissue properties of chloroplasts. This inference was based on the: (1) micro- and submicroscopic characteristics of the chloroplasts, (2) cytochemical localizations of functional PS I and PS II, (3) pigment patterns and compositions, (4) immunolocalization of Rubisco, and (5) net photosynthesis. It was inferred that all the chloroplasts across the lamina had adaptations to intermediate shade conditions, without a sun-shade dimorphism between the palisade and the spongy tissues. In the petiole, where normally-structured chloroplasts were surprisingly present in the entire thickness of the organ, a structural and chemical dimorphism was found between the outer chlorenchyma and the inner aerenchyma where intermediate shade-type and extreme shade-type chloroplasts were present, respectively. However, some anomalies in the pigment composition were noted chiefly in the inner aerenchyma (low concentrations of β-carotene and lutein, absence of zeaxanthin, presence of unusual pigments, for instance lutein epoxide, lutein cis-isomer, and chlorophyllide a). The Rubisco immunolabelling in the outer chlorenchyma of the petiole was similar to that in the lamina, while it was very scant in the inner aerenchyma. Net photosynthesis in the petiole was about 75% of that recorded in the lamina. These data suggest that the petiole of the mature winter leaf of A. italicum closely co-operates with the lamina for enhancing light capture and utilization.  相似文献   

9.
This paper describes a study of petiole structural morphology in which tissue materials, cross-sectional geometry, layer-architecture and hydrostatic condition are variables that affect the overall structural properties of the organ. Philodendron melinonii is selected as a model species for characterizing the mechanical properties of the petiole. The shape of the petiole is modeled through the polar parameterization of the Lame's curves, i.e. Gielis formulation. A multiscale model of bending stiffness is proposed to capture the impact of changing the constituent tissues and the cross-sectional geometry. Stiffness and density of different tissues are used to plot the domain bounded by the limiting curve of the respective tissue material. Shape parameters and the respective tissue properties are used to generate structural efficiency maps displaying property domains within which fall all possible combinations of tissues that are shaped into a certain geometry during growth. The turgor pressure is also taken into account to show how the domain of the effective material properties changes with water content. Finite element analysis besides experimental data is used to validate the theoretical results. The maps may offer a source of inspiration for biomimetic design, as they help to gain insight into the efficiency of biological beams described by different tissues properties, geometry and turgidity.  相似文献   

10.
11.
In Mimosa pudica, the main pulvinus, which brings about leafmovements, presents unusual structural characteristics in comparisonwith the petiole. Peculiar cellular features which exist inthe cortex, epidermis, parenchyma and endodermal regions includethe shape of the cells, their disposition and the location ofthe organelles. The central cylinder of the petiole is surrounded only by afew parenchyma layers whereas the central cylinder of the pulvinusforms a narrow central core enclosed in numerous cortical parenchymalayers. The phloem of the pulvinus contains collenchymatouscells towards the outside and possesses companion cells withwall ingrowths; these phloem members do not exist in the petiole.Xylem and protoxylem parenchyma cells of the petiole possesswall ingrowths which do not occur in homologous cells of thepulvinus. Moreover the pith of the pulvinus is composed of smallfibriform elements similar to the xylem fibriform elements ofthe organ. The structures observed may facilitate exchanges between cellsin the petiole and in the pulvinus. The predominant functionsof the organs relative to lateral and longitudinal transferof nutrients and conduction of stimuli are discussed. Mimosa pudica L., sensitive plant, pulvinus, ultrastructure, conduction of stimuli, leaf movement  相似文献   

12.
Roots of 3-d-old pea seedlings (Pisum sativum L.) were mechanically impeded using a sand core apparatus, which allowed mechanical impedance to be varied independently of aeration and water status. Turgor of root cortical cells was then measured using a pressure probe. In seedlings grown in sand cores for 1 d, impedance had little effect on turgor, but in seedlings grown in the sand cores for 2 d, impedance increased turgor by 0.18 MPa in the apical 6 mm.  相似文献   

13.
During a study of the diffusivity of sulphorhodamine G in the cortical apoplast of maize roots widely discrepant rates were found between different samples. In roots which had developed large aerenchyma spaces, the diffusion in some regions was very fast, indistinguishable from the rate in water. In other regions the rate was as much as 100 times slower. Examination of frozen intact roots with the cryo-scanning electron microscope showed the presence of liquid filling some of the aerenchyma spaces, while other spaces of the same root contained air. X-ray microanalysis of the liquid (for oxygen) showed that the liquid was water with few detectable ions. Similar liquid was present in small intercellular spaces within the spoke-like radial files of cells between the large spaces, or between remnants of collapsed cell walls at the edges of the large spaces. It is proposed that regions of roots with high diffusivity are those in which some of the aerenchyma spaces are filled with water. In seeking the origin of this liquid, the progress of aerenchyma formation could be followed in the frozen tissues. The first change observed in a group of contiguous cells was a loss of vacuolar solutes and of cell turgor. Next the walls broke apart and collapsed back onto the surrounding turgid cells leaving a volume of ion-poor liquid. The liquid was probably not that found in some aerenchyma spaces of the mature roots, because the final stage of space formation was a loss of the liquid, leaving an air filled cavity surrounded by a composite lining formed from the collapsed walls of the broken cells. It is likely that the liquid in the spaces of mature aerenchyma is exuded from the remaining living cortical cells at times when the root turgor is high. This would be consistent with several recent studies which have shown periodic exudation of water from the surface of turgid roots. The spasmodic occurrence of root cortex tissue with enhanced diffusivity would have important implications for the transport of nutrient ions across the root.Abbreviations CSEM cryo-scanning electron microscope - EDX energy dispersive X-ray microanalysis - SR-G sulphorhodamine G  相似文献   

14.
The direct contribution of forces in tree structures in the lung to lung recoil pressure and changes in recoil pressure induced by alterations of the forces are analyzed. The analysis distinguishes the contributions of axial and circumferential tensions in the trees and indicates that only axial tensions directly contribute to static recoil. This contribution is derived from analysis of the axial forces transmitted across a random plane transecting the lung. The change in recoil pressure induced by changes in axial tension is similarly derived. Alterations of circumferential tensions in the trees indirectly change recoil by causing nonuniform deformations of the surrounding lung parenchyma, and a continuum elasticity solution for the stress induced by the deformations is derived. Sample calculations are presented for the airway tree based on available data on airway morphometric and mechanical properties. The increase in recoil pressure accompanying increases in axial and circumferential tensions with contraction of airway smooth muscle is also analyzed. The calculations indicate that axial stresses in the airway tree out to bronchioles directly contribute only a small fraction of the static recoil pressure. However, it is found that contraction of smooth muscle in these airways can increase recoil pressure appreciably (10-20%), mainly by the deformation of the parenchyma with increases in circumferential tension in smaller airways. The results indicate that the geometric and mechanical properties of the airway tree are such that only peripheral elements of the tree can substantially affect the elastic properties of the lung. The possible contributions of vascular trees for which data on mechanical and morphometric properties are more limited are also discussed.  相似文献   

15.
Given that stomatal movement is ultimately a mechanical process and that stomata are morphologically and mechanically diverse, we explored the influence of stomatal mechanical diversity on leaf gas exchange and considered some of the constraints. Mechanical measurements were conducted on the guard cells of four different species exhibiting different stomatal morphologies, including three variants on the classical "kidney" form and one "dumb-bell" type; this information, together with gas-exchange measurements, was used to model and compare their respective operational characteristics. Based on evidence from scanning electron microscope images of cryo-sectioned leaves that were sampled under full sun and high humidity and from pressure probe measurements of the stomatal aperture versus guard cell turgor relationship at maximum and zero epidermal turgor, it was concluded that maximum stomatal apertures (and maximum leaf diffusive conductance) could not be obtained in at least one of the species (the grass Triticum aestivum) without a substantial reduction in subsidiary cell osmotic (and hence turgor) pressure during stomatal opening to overcome the large mechanical advantage of subsidiary cells. A mechanism for this is proposed, with a corollary being greatly accelerated stomatal opening and closure. Gas-exchange measurements on T. aestivum revealed the capability of very rapid stomatal movements, which may be explained by the unique morphology and mechanics of its dumb-bell-shaped stomata coupled with "see-sawing" of osmotic and turgor pressure between guard and subsidiary cells during stomatal opening or closure. Such properties might underlie the success of grasses.  相似文献   

16.
17.
The osmotic pressure of the cell sap of stalk storage parenchyma of sugarcane (Saccharum spp. hybrids) increases by an order of magnitude during ontogeny to reach molar concentrations of sucrose at maturity. Stalk parenchyma cells must either experience very high turgor at maturation or have an ability to regulate turgor. We tested this hypothesis by using pressure probe techniques to quantify parameters of cell and tissue water relations of sugarcane storage parenchyma during ontogeny. The largest developmental change was in the volumetric elastic modulus, which increased from 6 bars in immature tissue to 43 bars in mature tissue. Turgor was maintained relatively low during sucrose accumulation by the partitioning of solutes between the cell and wall compartments. Membrane hydraulic conductivity decreased from about 12 × 10−7 centimeters per second per bar down to 4.4 × 10−7 centimeters per second per bar. The 2.7-fold decrease in membrane hydraulic conductivity during tissue maturation was accompanied by a 7.8-fold increase in wall elasticity. Integration of the cell wall and membrane properties appears to be by the opposing effects of turgor on hydraulic conductivity and elastic modulus. The changes in these properties during development of sugarcane stalk tissue may be a way for parenchyma cells to develop a capacity for expansive growth and still serve as a strong sink for storing high concentrations of sucrose.  相似文献   

18.
MURPHY  RICARDO 《Annals of botany》1989,63(5):551-559
Confirming a previous analysis by Lang (1974), it is concludedthat in tree trunks, phloem turgor and turgor gradients maybe estimated from osmotic pressure and osmotic-pressure gradients,respectively. The present analysis is an improvement becauseit is based on observed osmotic-pressure gradients rather thansupposed turgor gradients, and allowance is made for sucroseunloading and gradients of external water potential. It is concludedthat the rate of sucrose unloading in tree trunks must be lessthan 50 nmol m–2 S m–1. In small plants, higherrates of unloading (100 nmol m m–2 S m–1) and steeperconcentration gradients will lead to larger errors, but turgorpressures can still be estimated with acceptable accuracy. Oneshould be more cautious when considering turgor gradients insmall plants, although it seems likely that reasonable estimateswill still be obtained. Assuming plasmodesmatal transport throughan unconstricted cytoplasmic annulus, it is concluded that thesieve elements and their associated cells will sustain verysimilar turgor and osmotic pressures. Convection and diffusioncan both contribute significantly to plasmodesmatal sucroseunloading. Similarly, the plasmodesmatal volume flux will reflecta combination of pressure flow and osmosis. Water fluxes acrossthe sieve element plasmalemma and through the plasmodesmatacan be in opposite directions. It may be possible to assessthe extent of hydraulic coupling between the sieve elementsand their associated cells from studies of phloem water relations Phloem, turgor, osmotic pressure, plasmodesmata, phloem unloading, Munch hypothesis  相似文献   

19.
The development of aerenchyma in the petiole of Sagittaria trifolia L. was studied by means of light-microscopy, scanning electron microscope, transmission electron microscope and immunofluorescence, focusing on the formation of intercellular spaces in diaphragms and its relationship with the organization of cortical microtubule arrays. A complex and organized honeycomb-like schizogenous aerenchyma formed by cylinders and vascular diaphragms was observed in the petiole of S. trifolia at different developmental stages. Cell division was the primary factor contributing to the increased volume of air spaces at early stages, while cell enlargement became the primary factor at later stages. The cortical microtubules localize at the sites where intercellular spaces and the secondary cell walls will be formed or deposited during the formation of intercellular spaces by the separation of diaphragm cells. Cortical microtubules were observed at the boundary of diaphragm cells and the fringes of intercellular spaces at later developmental stages where cell expansion occurs rapidly. These observations support the hypothesis that reorganization of cortical microtubule arrays might be related to the formation of air spaces in diaphragms and are involved in the deposition of secondary cell walls.  相似文献   

20.
A quantitative anatomical study of the stem structure of grasses of various ecological groups: xerophytes, mespohytes, ephemers, hydrophytes and psammophytes (a total of 30 species) was carried out. The proportions of the various tissues in the stem were expressed as a percentage of the cross-sectional area of the stem. Stems of hydrophytes were found to have only small proportion of mechanical (4-8%) and conducting (2-5%) tissues but a large pro. portion of parenchyma (85-93% - primary cortex and basic parenchyma) and air system (38-40% - parenchyma channels or specialized aerenchyma). The stems of xerophytes possess a highly developed sclerenchyma (30-50%) and vessel bundles (6-13%) while the parenchyma is less developed (36-60%). The cells of the stems of hydrophytes are larger than those of xerophytes, but the cell membranes are thinner. The structure of mesophytes is intermediate between that of hydrophytes and xerophytes and the structure of ephemers is very similar to that of mesophytes. Psammophytes differ from xerophytes in having more mesomorphous features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号