首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rheological properties were determined for cuticular membranes (CMs) enzymatically isolated from mature tomato (Lycopersicon esculentum Mill. cv Pik Red) fruit. The cuticle responded as a viscoelastic polymer in stress-strain studies. Both CM and dewaxed CM expanded and became more elastic and susceptible to fracture when hydrated, suggesting that water plasticized the cuticle. Dewaxing of the CM caused similar changes in elasticity and fracturing, indicating that wax may serve as a supporting filler in the cutin matrix. Exposure of the cuticle to the surfactant Triton X-100 did not significantly affect its rheological properties.  相似文献   

2.
Viscoelastic behaviour of isolated tomato fruit cuticle (CM) is well known and extensively described. Temperature and hydration conditions modify the mechanical properties of CM. Mechanical data from previous transient‐creep analysis developed in tomato fruit cuticle under different temperature and hydration conditions have been used to propose a rheological model that describes the viscoelastic nature of CM. As a composite material, the biomechanical behaviour of the plant cuticle will depend not only on the mechanical characteristics of the individual components by themselves but also on the sum of them. Based on this previous information, we proposed a two‐element model to describe the experimental behaviour: an elastic hookean element connected in parallel to a viscous element or Voigt element that will describe the mechanical behaviour of the isolated CM and cutin under the studied conditions. The main parameters of the model, E1 and E2 will reflect the elastic and viscoelastic behaviour of the cuticle. Relationship between these physical parameters and the change in CM properties were discussed in order to elucidate the rheological processes taking place in CM. This model describes both the influence of temperature and hydration and the behaviour of the isolated cutin and the inferred contribution of the cuticle fraction of polysaccharides when the whole cuticle is tested.  相似文献   

3.
The mechanical characteristics of the cuticular membrane (CM), a complex composite biopolymer basically composed of a cutin matrix, waxes, and hydrolysable polysaccharides, have been described previously. The biomechanical behaviour and quantitative contribution of cutin and polysaccharides have been investigated here using as experimental material mature green and red ripe tomato fruits. Treatment of isolated CM with anhydrous hydrogen fluoride in pyridine allowed the selective elimination of polysaccharides attached to or incrusted into the cutin matrix. Cutin samples showed a drastic decrease in elastic modulus and stiffness (up to 92%) compared with CM, which clearly indicates that polysaccharides incorporated into the cutin matrix are responsible for the elastic modulus, stiffness, and the linear elastic behaviour of the whole cuticle. Reciprocally, the viscoelastic behaviour of CM (low elastic modulus and high strain values) can be assigned to the cutin. These results applied both to mature green and red ripe CM. Cutin elastic modulus, independently of the degree of temperature and hydration, was always significantly higher for the ripe than for the green samples while strain was lower; the amount of phenolics in the cutin network are the main candidates to explain the increased rigidity from mature green to red ripe cutin. The polysaccharide families isolated from CM were pectin, hemicellulose, and cellulose, the main polymers associated with the plant cell wall. The three types of polysaccharides were present in similar amounts in CM from mature green and red ripe tomatoes. Physical techniques such as X-ray diffraction and Raman spectroscopy indicated that the polysaccharide fibres were mainly randomly oriented. A tomato fruit CM scenario at the supramolecular level that could explain the observed CM biomechanical properties is presented and discussed.  相似文献   

4.
To further our understanding of the mechanisms underlying chest wall mechanics, we investigated the dynamic response of the isolated passive rat diaphragm strip. Stress adaptation of the tissue was measured from 0.05 to 60 s after subjecting the strips to strain steps of normalized strain amplitudes from 0.005 to 0.04. The tissue resistance (R), elastance (E), and hysteresivity (eta) were measured in the same range of amplitudes by sinusoidally straining the strip at frequencies from 0.03125 to 10 Hz. The stress (T) depended exponentially on the strain (epsilon) and relaxed and recovered linearly with the logarithm of time. E increased linearly with the logarithm of frequency and decreased with increasing amplitude. R fell hyperbolically with frequency and showed an amplitude dependence similar to that of E. To interpret the strong nonlinear behavior, we extended the viscoelastic model of Hildebrandt (J. Appl. Physiol. 28: 365-372, 1970) to include an exponential stress-strain relationship. Accordingly, the step response was described by T - Tr = Tr(e alpha delta epsilon - 1)(1 - gamma log t), where delta epsilon is the strain amplitude, Tr is the initial operating stress, alpha is a measure of the stress-strain nonlinearity, and gamma is the rate of stress adaptation. The oscillatory response of the model was computed by applying Fung's quasi-linear viscoelastic theory. This quasi-linear viscoelastic model fitted the step and oscillatory data fairly well but only if alpha depended negatively on delta epsilon, as might be expected in a plastic material.  相似文献   

5.
We investigated the validity of employing a fuzzy piecewise prediction equation (PW) [Gonzalez et al. J Appl Physiol 107: 379-388, 2009] defined by sweat rate (m(sw), g·m(-2)·h(-1)) = 147 + 1.527·(E(req)) - 0.87·(E(max)), which integrates evaporation required (E(req)) and the maximum evaporative capacity of the environment (E(max)). Heat exchange and physiological responses were determined throughout the trials. Environmental conditions were ambient temperature (T(a)) = 16-26°C, relative humidity (RH) = 51-55%, and wind speed (V) = 0.5-1.5 m/s. Volunteers wore military fatigues [clothing evaporative potential (i(m)/clo) = 0.33] and carried loads (15-31 kg) while marching 14-37 km over variable terrains either at night (N = 77, trials 1-5) or night with increasing daylight (N = 33, trials 6 and 7). PW was modified (Pw,sol) for transient solar radiation (R(sol), W) determined from measured solar loads and verified in trials 6 and 7. PW provided a valid m(sw) prediction during night trials (1-5) matching previous laboratory values and verified by bootstrap correlation (r(bs) of 0.81, SE ± 0.014, SEE = ± 69.2 g·m(-2)·h(-1)). For trials 6 and 7, E(req) and E(max) components included R(sol) applying a modified equation Pw,sol, in which m(sw) = 147 + 1.527·(E(req,sol)) - 0.87·(E(max)). Linear prediction of m(sw) = 0.72·Pw,sol + 135 (N = 33) was validated (R(2) = 0.92; SEE = ±33.8 g·m(-2)·h(-1)) with PW β-coefficients unaltered during field marches between 16°C and 26°C T(a) for m(sw) ≤ 700 g·m(-2)·h(-1). PW was additionally derived for cool laboratory/night conditions (T(a) < 20°C) in which E(req) is low but E(max) is high, as: PW,cool (g·m(-2)·h(-1)) = 350 + 1.527·E(req) - 0.87·E(max). These sweat prediction equations allow valid tools for civilian, sports, and military medicine communities to predict water needs during a variety of heat stress/exercise conditions.  相似文献   

6.
Investigations of the longitudinal distribution of the extensibility of staminal filaments of the common thistle (Cirsium horridulum Michx.) showed that the base of the filaments (attachment to corolla) is almost twice as elastic as the apical portion (next to anthers). Boiling leads to a more uniform distribution of extensibility. Using a stress-strain analyzer we investigated the elastic properties of fresh, water-boiled, partially hydrolyzed (acid-boiled), and dehydrated filaments. Stress-strain curves of sinusoidally stretched sets of filaments revealed complex, non-linear behavior with an average modulus of elasticity of 5 MPa·m–2. The phase angle varied from approximately 18 degrees for 0.01-Hz deformations to 84 degrees at 2 Hz, indicating strong viscoelastic components. The viscoelasticity of the filaments indicates that the cell walls have a high ratio of pectin to cellulose. Boiling does not affect Young's modulus, but dehydration does. The technique of applying sinusoidal loads and the analysis of the stress-strain curves proves useful for the assessment of mechanical properties of cell walls, especially for non-growing or contractile tissues.We thank Dr. Paul Russo, Louisiana State University, for allowing us to use the stress-strain analyzer. This work was supported by National Science Foundation grant IBN-9118094.  相似文献   

7.
The effect of humid heat acclimation on thermoregulatory responses to humid and dry exercise-heat stress was studied in six exercise-trained Thoroughbred horses. Horses were heat acclimated by performing moderate-intensity exercise for 21 days in heat and humidity (HH) [34.2-35.7 degrees C; 84-86% relative humidity (RH); wet bulb globe temperature (WBGT) index approximately 32 degrees C]. Horses completed exercise tests at 50% of peak O(2) uptake until a pulmonary arterial temperature (T(pa)) of 41.5 degrees C was attained in cool dry (CD) (20-21.5 degrees C; 45-50% RH; WBGT approximately 16 degrees C), hot dry (HD 0) [32-34 degrees C room temperature (RT); 45-55% RH; WBGT approximately 25 degrees C], and HH conditions (HH 0), and during the second hour of HH on days 3, 7, 14, and 21, and in HD on the 18th day (HD 18) of heat acclimation. The ratios of required evaporative capacity to maximal evaporative capacity of the environment (E(req)/E(max)) for CD, HD, and HH were approximately 1.2, 1.6, and 2.5, respectively. Preexercise T(pa) and rectal temperature were approximately 0.5 degrees C lower (P < 0. 05) on days 7, 14, and 21 compared with day 0. With exercise in HH, there was no effect of heat acclimation on the rate of rise in T(pa) (and therefore exercise duration) nor the rate of heat storage. In contrast, exercise duration was longer, rate of rise in T(pa) was significantly slower, and rate of heat storage was decreased on HD 18 compared with HD 0. It was concluded that, during uncompensable heat stress in horses, heat acclimation provided modest heat strain advantages when E(req)/E(max) was approximately 1.6, but at higher E(req)/E(max) no advantages were observed.  相似文献   

8.
The knee ligaments and patellar tendon function in concert with each other and other joint tissues, and are adapted to their specific physiological function via geometry and material properties. However, it is not well known how the viscoelastic and quasi-static material properties compare between the ligaments. The purpose of this study was to characterize and compare these material properties between the knee ligaments and patellar tendon.Dumbbell-shaped tensile test samples were cut from bovine knee ligaments (ACL, LCL, MCL, PCL) and patellar tendon (PT) and subjected to tensile testing (n = 10 per ligament type). A sinusoidal loading test was performed at 8% strain with 0.5% strain amplitude using 0.1, 0.5 and 1 Hz frequencies. Subsequently, an ultimate tensile test was performed to investigate the stress-strain characteristics.At 0.1 Hz, the phase difference between stress and strain was higher in LCL compared with ACL, PCL and PT (p < 0.05), and at 0.5 Hz that was higher in LCL compared with all other ligaments and PT (p < 0.05). PT had the longest toe-region strain (p < 0.05 compared with PCL and MCL) and MCL had the highest linear and strain-dependent modulus, and toughness (p < 0.05 compared with ACL, LCL and PT).The results indicate that LCL is more viscous than other ligaments at low-frequency loads. MCL was the stiffest and toughest, and its modulus increased most steeply at the toe-region, possibly implying a greater amount of collagen. This study improves the knowledge about elastic, viscoelastic and failure properties of the knee ligaments and PT.  相似文献   

9.
Cleland R 《Plant physiology》1971,47(6):805-811
In order to assess the role of the mechanical properties of the wall in auxin-induced cell elongation, a study has been made of the ability of isolated Avena coleoptile walls to extend (creep) when subjected to a constant applied stress. Creep occurs as a viscoelastic extension which has the following characteristics: the extension is proportional to log time and is partly reversible, and the extension rate has a Q10 of about 1.05 and is markedly greater in auxin-pretreated walls. In nonconditioned walls the extension rate is proportional to applied stress, but pre-extension causes the appearance of an apparent yield strain. The similarity of creep and instantaneous plastic deformation in response to temperature or to pretreatment with auxin or KCN suggests that the instantaneous deformation is simply the viscoelastic extension which occurs at very short times. A comparison of these viscoelastic properties with the properties of auxin-induced cell elongation indicates that cell elongation requires more than just a physical extension of the wall. It is suggested that elongation occurs as a series of extension steps, each of which involves a viscoelastic extension preceded or accompanied by an auxin-dependent biochemical change in the wall properties.  相似文献   

10.
We report the biomechanics and anatomy of fruit wall peels (before and after cellulase/pectinase treatment) from two Lycopersicon esculentum cultivars (i.e., Inbred 10 and Sweet 100 cherry tomatoes). Samples were tested before and after enzyme treatment in uniaxial tension to determine their rate of creep, plastic and instantaneous elastic strains, breaking stress (strength), and work of fracture. The fruit peels of both cultivars exhibited pronounced viscoelastic and strain-hardening behavior, but differed significantly in their rheological behavior and magnitudes of material properties, e.g., Inbred 10 peels crept less rapidly and accumulated more plastic strains (but less rapidly), were stiffer and stronger, and had a larger work of fracture than Sweet 100 peels. The cuticular membrane (CM) also differed; e.g., Sweet 100 CM strain-softened at forces that caused Inbred 10 to strain-harden. The mechanical behavior of peels and their CM correlated with anatomical differences. The Inbred 10 CM develops in subepidermal cell layers, whereas the Sweet 100 CM is poorly developed below the epidermis. Based on these and other observations, we posit that strain-hardening involves the realignment of CM fibrillar elements and that this phenomenon is less pronounced for Sweet 100 because fewer cell walls contribute to its CM compared to Inbred 10.  相似文献   

11.
The control of growth rate and the mechanical integrity of the tomato (Lycopersicon esculentum Mill.) fruit has been attributed to the exocarp. This study focused on the biomechanics of the fruit skin (FS) comprising cuticle, epidermis and a few subdermal cell layers, and the enzymatically isolated cuticular membrane (CM) during fruit growth and ripening. Morphology and mechanical properties of the FS and the CM of three cultivars were analysed separately at three distinct ripening stages by scanning electron microscopy (SEM) and one-dimensional tension testing, respectively. Both were subject to significant cultivar-specific changes. Thickness of the CM increased during ripening from 7.8-8.6 to 9.9-15.7 microm and exceeded by far that of the epidermal cell wall. The mechanical properties, such as modulus of elasticity, strength, and failure strain, were highest in the FS for all cultivars at any stage, with only one exception; however, the cuticle largely mirrored these properties throughout fruit maturation. Stiffness of both isolated CM and FS increased from immature to fully ripe fruits for all cultivars, while failure stress and failure strain displayed a tendency to decrease for two of them. Stress-strain behaviour of the CM could be described as strain softening, mostly linear elastic throughout, and strain hardening, and was subject to growth-related changes. The FS displayed strain hardening throughout. The results indicate evidence for the cuticle to become increasingly important as a structural component for the integrity of the tomato fruit in addition to the epidermis. A supplementary putative model for tomato fruit growth is proposed.  相似文献   

12.
Negative and positive work performed during leg extension movements of 53 well trained subjects was measured with the help of a special dynamometer. The subjects performed four maximal push off trials against five different loads (25-105 kg): two two-legged extensions from a squatting position (SM) with a knee angle of 70 degrees and two trials with a preliminary counter movement (CM) but with the same extension range as in the SM. Positive work differed only by about 4% between CM and SM in spite of large differences in initial forces at the onset of concentric contraction. Based on simulations, it is suggested that in CM the advantage of stored elastic energy can almost completely be nullified by the disadvantage of a limited shortening distance of the contractile elements. It is hypothesised that elastic energy in CM can only cause considerable extra work during concentric contraction compared to the maximal positive work done in SM if the total range of lengthening and shortening of the muscle(s) involved is larger in CM than in SM.  相似文献   

13.
A nonlinear viscoelastic finite element model of ultra-high molecular weight polyethylene (UHMWPE) was developed in this study. Eight cylindrical specimens were machined from ram extruded UHMWPE bar stock (GUR 1020) and tested under constant compression at 7% strain for 100 sec. The stress strain data during the initial ramp up to 7% strain was utilized to model the "instantaneous" stress-strain response using a Mooney-Rivlin material model. The viscoelastic behavior was modeled using the time-dependent relaxation in stress seen after the initial maximum stress was achieved using a stored energy formulation. A cylindrical model of similar dimensions was created using a finite element analysis software program. The cylinder was made up of hexahedral elements, which were given the material properties utilizing the "instantaneous" stress-strain curve and the energy-relaxation curve obtained from the experimental data. The cylinder was compressed between two flat rigid bodies that simulated the fixtures of the testing machine. Experimental stress-relaxation, creep and dynamic testing data were then used to validate the model. The mean error for predicted versus experimental data for stress relaxation at different strain levels was 4.2%. The mean error for the creep test was 7% and for dynamic test was 5.4%. Finally, dynamic loading in a hip arthroplasty was modeled and validated experimentally with an error of 8%. This study establishes a working finite element material model of UHMWPE that can be utilized to simulate a variety of postoperative arthroplasty conditions.  相似文献   

14.
Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accuracy for modeling the nearly incompressible brain tissue, deviatoric and volumetric stress contributions are separated. Deviatoric stress is modeled in a non-linear viscoelastic differential form. Volumetric behavior is assumed linearly elastic. Linear viscoelastic material parameters were derived from published data on oscillatory experiments, and from ultrasonic experiments. Additionally, non-linear parameters were derived from stress relaxation (SR) experiments at shear strains up to 20%. The model was tested by simulating the transient phase in the SR experiments not used in parameter determination (strains up to 20%, strain rates up to 8s(-1)). Both time- and strain-dependent behavior were predicted accurately (R2>0.96) for strain and strain rates applied. However, the stress was overestimated systematically by approximately 31% independent of strain(rate) applied. This is probably caused by limitations of the experimental data at hand.  相似文献   

15.
Survival of airborne virus influences the extent of disease transmission via air. How environmental factors affect viral survival is not fully understood. We investigated the survival of a vaccine strain of Gumboro virus which was aerosolized at three temperatures (10°C, 20°C, and 30°C) and two relative humidities (RHs) (40% and 70%). The response of viral survival to four metrics (temperature, RH, absolute humidity [AH], and evaporation potential [EP]) was examined. The results show a biphasic viral survival at 10°C and 20°C, i.e., a rapid initial inactivation in a short period (2.3 min) during and after aerosolization, followed by a slow secondary inactivation during a 20-min period after aerosolization. The initial decays of aerosolized virus at 10°C (1.68 to 3.03 ln % min(-1)) and 20°C (3.05 to 3.62 ln % min(-1)) were significantly lower than those at 30°C (5.67 to 5.96 ln % min(-1)). The secondary decays at 10°C (0.03 to 0.09 ln % min(-1)) tended to be higher than those at 20°C (-0.01 to 0.01 ln % min(-1)). The initial viral survival responded to temperature and RH and potentially to EP; the secondary viral survival responded to temperature and potentially to RH. In both phases, survival of the virus was not significantly affected by AH. These findings suggest that long-distance transmission of airborne virus is more likely to occur at 20°C than at 10°C or 30°C and that current Gumboro vaccination by wet aerosolization in poultry industry is not very effective due to the fast initial decay.  相似文献   

16.
亚高温下不同空气湿度对番茄光合作用和物质积累的影响   总被引:1,自引:0,他引:1  
为了研究亚高温下不同空气湿度对番茄植株光合作用及物质积累的影响,本试验利用人工气候室,在11:00—15:00平均温度为33℃的亚高温条件下,设置3个空气相对湿度处理,分别为70%~80%(高湿)、50%~60%(中湿)和不加湿的30%~40%(低湿)。结果表明:在处理25d时,高湿处理番茄叶片叶绿素含量、净光合速率显著高于低湿处理,而低湿处理果实空洞率比高湿处理高18.4%(P<0.05);在33℃亚高温条件下,70%~80%的相对湿度有利于光合作用的增强和果实品质的提高。  相似文献   

17.
Mechanical properties of brain tissue in tension   总被引:15,自引:0,他引:15  
This paper contains experimental results of in vitro, uniaxial tension of swine brain tissue in finite deformation as well as proposes a new hyper-viscoelastic constitutive model for the brain tissue. The experimental results obtained for two loading velocities, corresponding to strain rates of 0.64 and 0.64 x 10(-2)s(-1), are presented. We believe that these are the first ever experiments of this kind. The applied strain rates were similar to those applied in our previous study, focused on explaining brain tissue properties in compression. The stress-strain curves are convex downward for all extension rates. The tissue response stiffened as the loading speed increased, indicating a strong stress-strain rate dependence. Swine brain tissue was found to be considerably softer in extension than in compression. Previously proposed in the literature brain tissue constitutive models, developed based on experimental data collected in compression are shown to be inadequate to explain tissue behaviour in tension. A new, non-linear, viscoelastic model based on the generalisation of the Ogden strain energy hyper-elastic constitutive equation is proposed. The new model accounts well for brain tissue deformation behaviour in both tension and compression (natural strain in <-0.3,0.2>) for strain rates ranging over five orders of magnitude.  相似文献   

18.
19.
Changes in surface area, deposition and elastic strain of the cuticular membrane (CM) were monitored during development of sweet cherry (Prunus avium L.) fruit. Fruit mass and surface area ('Sam') increased in a sigmoidal pattern between 16 and 85 days after full bloom (DAFB) with maximum rates of 0.35 g day(-1) and 0.62 cm(2) day(-1), respectively. Rates of total area strain, namely the sum of elastic plus plastic strain, were highest in cheek and stem cavity regions followed by stylar and suture regions. Rates of total uniaxial strain were higher in transverse, namely perpendicular to the stem/stylar axis, than in longitudinal direction, namely parallel to the stem/stylar axis. On a whole fruit basis CM mass remained essentially constant during fruit development. Mass of CM, dewaxed CM and wax per unit surface area decreased during development, particularly between 43 and 71 DAFB. There was no change in wax content of isolated CM. Up to 43 DAFB the surface area of isolated CM was similar to the area prior to excision indicating little elastic strain, but markedly decreased thereafter. Calculating elastic and plastic components of total strain of the CM revealed, that initial deformation up to 22 to 43 DAFB was mostly plastic. Thereafter, elastic strain was evident and both, elastic and plastic deformation, increased linearly with an increase in total strain. There was no consistent difference in the relative contribution of elastic strain to total strain between transverse and longitudinal directions, but both total and elastic strain were larger in the transverse direction. Abrading the CM had only little effect on fruit turgor. However, turgor decreased when the exocarp was cut indicating that the exocarp provided a significant structural shell of a mature sweet cherry fruit ('Regina'). Our data demonstrate, that (1) surface area expansion in sweet cherry fruit causes elastic and plastic strain of the CM, and (2) the onset of elastic strain coincided with the cessation of CM formation.  相似文献   

20.
Pseudomonas aeruginosa strain NB1 uses chloromethane (CM) as its sole source of carbon and energy under nitrate-reducing and aerobic conditions. The observed yield of NB1 was 0.20 (+/-0.06) (mean +/- standard deviation) and 0.28 (+/-0.01) mg of total suspended solids (TSS) mg of CM(-1) under anoxic and aerobic conditions, respectively. The stoichiometry of nitrate consumption was 0.75 (+/-0.10) electron equivalents (eeq) of NO(3)(-) per eeq of CM, which is consistent with the yield when it is expressed on an eeq basis. Nitrate was stoichiometrically converted to dinitrogen (0.51 +/- 0.05 mol of N(2) per mol of NO(3)(-)). The stoichiometry of oxygen use with CM (0.85 +/- 0.21 eeq of O(2) per eeq of CM) was also consistent with the aerobic yield. Stoichiometric release of chloride and minimal accumulation of soluble metabolic products (measured as chemical oxygen demand) following CM consumption, under anoxic and aerobic conditions, indicated complete biodegradation of CM. Acetylene did not inhibit CM use under aerobic conditions, implying that a monooxygenase was not involved in initiating aerobic CM metabolism. Under anoxic conditions, the maximum specific CM utilization rate (k) for NB1 was 5.01 (+/-0.06) micromol of CM mg of TSS(-1) day(-1), the maximum specific growth rate (micro(max)) was 0.0506 day(-1), and the Monod half-saturation coefficient (K(s)) was 0.067 (+/-0.004) microM. Under aerobic conditions, the values for k, micro(max), and K(s) were 10.7 (+/-0.11) micromol of CM mg of TSS(-1) day(-1), 0.145 day(-1), and 0.93 (+/-0.042) microM, respectively, indicating that NB1 used CM faster under aerobic conditions. Strain NB1 also grew on methanol, ethanol, and acetate under denitrifying and aerobic conditions, but not on methane, formate, or dichloromethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号