首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the earliest isorophid edrioasteroids from the upper Middle Cambrian-lower Upper Cambrian (upper part of Series 3-lower part of the Furongian Series) of northern Iran is described. It has unusual branched ambulacra, which extend beyond the theca almost to the marginal rim. These unusual features reflect the latent possibility of appearance of separated from the theca and even branching food-gathering appendages, such as arms in crinoids and brachials in blastozoans, in common ancestor of all radially symmetrical echinoderms.  相似文献   

2.
Recent debates over the evolutionary relationships of early echinoderms have relied heavily on morphological evidence from the feeding ambulacral system. Eumorphocystis, a Late Ordovician diploporitan, has been a focus in these debates because it bears ambulacral features that show strong morphological similarity to early crinoid arms. Undescribed and well‐preserved specimens of Eumorphocystis from the Bromide Formation (Oklahoma, USA) provide new data illustrating that composite arms supported by a radial plate that bear a triserial arrangement of axial and extraxial components encasing a coelomic extension can also be found in blastozoans. Previous reports have considered these arm structures to be restricted to crinoids; these combined features have not been previously observed in blastozoan echinoderms. Phylogenetic analyses suggest that Eumorphocystis and crinoids are sister taxa and that shared derived features of these taxa are homologous. The evidence from the arms of Eumorphocystis suggests that crinoid arms were derived from a specialized blastozoan ambulacral system that lost feeding brachioles and strongly suggests that crinoids are nested within blastozoans.  相似文献   

3.
The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved more slowly than the extraxial skeleton that forms the majority of the body. Recent phylogenetic hypotheses have focused on characters of the extraxial skeleton, which may have evolved too rapidly to preserve obvious homologies across all these groups. The axial skeleton conserved homologous suites of characters shared between various edrioasteroids and specific blastozoans, and between other blastozoans and crinoids. Although individual plates can be inferred as homologous, no directly overlapping suites of characters are shared between edrioasteroids and crinoids. Six different systems of mouth (peristome) plate organization (Peristomial Border Systems) are defined. These include four different systems based on the arrangement of the interradially-positioned oral plates and their peristomial cover plates, where PBS A1 occurs only in plesiomorphic edrioasteroids, PBS A2 occurs in plesiomorphic edrioasteroids and blastozoans, and PBS A3 and PBS A4 occur in blastozoans and crinoids. The other two systems have radially-positioned uniserial oral frame plates in construction of the mouth frame. PBS B1 has both orals and uniserial oral frame plates and occurs in edrioasterid and possibly edrioblastoid edrioasteroids, whereas PBS B2 has exclusively uniserial oral frame plates and is found in isorophid edrioasteroids and imbricate and gogiid blastozoans. These different types of mouth frame construction offer potential synapomorphies to aid in parsimony-based phylogenetics for exploring branching order among stem groups on the echinoderm tree of life.  相似文献   

4.
The erect feeding appendages of paracrinoids, brachioles of typical blastozoans and arms of crinoids are morphologically similar in their terminal growth, biserial cover plates, and pinnulation. This is attributed to the inducing effect of the radial ambulacral canal on their growth mode. The uniserial brachioles of Laurentian paracrinoids are homologous to the biserial brachioles of the Baltic Achradocystites and Heckerites, and those of other blastozoans. Based on this assumption, the two Baltic genera, which have a brachiole system plesiomorphic for paracrinoids, and a similar morphology of the theca, are assigned to this class. Brachiolars in brachioles are a new development, homologous to the flooring plates of the food groove and, where present, are the continuations of these plates beyond the theca. The uniserial brachioles of Laurentian paracrinoids evolved from the biserial brachioles as a result of a gradual shift of brachiolars in the neighboring rows and their subsequent fusion in pairs. Brachials in crinoidal arms are a new development that evolved as distal serial growth of radial plates under the induced influence of the incipient radial canals emerging from the closed vestibular cavity, which was an ontogenetic innovation in crinoids. The transformation of a nonorganized small-plated theca into a large-plated, and completely or partly symmetrized theca, or vice versa is possible and results from accelerated or retarded growth of some plate generation in relation to the growth rate of the theca.  相似文献   

5.
THE EARLY RADIATION AND PHYLOGENY OF ECHINODERMS   总被引:3,自引:0,他引:3  
1. Living echinoderms are characterized by an extensive water vascular system developed from the larval left hydrocoel, a complex, multi-plated endoskeleton with stereom structure, and pentamery. Fossil evidence shows that stereom evolved before pentamery, but both were acquired during the Lower Cambrian. 2. Cladistic analysis of Lower Cambrian genera reveals very few characters in common between carpoids and true echinoderms, and that the split between them was the first fundamental evolutionary dichotomy within the Dexiothetica. 3. Helicoplacoids are stem group echinoderms with spiral plating and three ambulacra arranged radially around a lateral mouth. They are the most primitive echinoderms and the first to show a radial arrangement of the water vascular and ambulacral systems. Unlike later echinoderms, their skeleton shows no dorsal/ventral (aboral/oral) differentiation. They were probably sedentary suspension feeders. 4. Camptostroma is the most primitive known pentaradiate echinoderm and, in our view, possibly a common ancestor of all living groups. It had a short conical dorsal (aboral) surface with imbricate plating, a ridged lateral wall and a slightly domed ventral (oral) surface with five curved ambulacra in a 2-1-2 arrangement inherited from the triradiate pattern of the helicoplacoids. Interambulacral areas bore epispires and the CD interambulacrum contained the anus, hydropore and/or gonopore. All parts of the theca had plates in at least two layers. 5. All other echinoderms belong to one of two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa. 6. Stromatocystites is the earliest known eleutherozoan and differs from Camptostroma in having a test with only one layer of plates and having lost the dorsal elongation. In Stromatocystites the dorsal surface is flat and the plating tesselate. Stromatocystites was an unattached, low-level suspension feeder. 7. The lepidocystoids are the earliest known pelmatozoans. They differ from Camptostroma in having an attached dorsal stalk which retained the primitive imbricate plating, and by developing erect feeding structures along the ambulacra. In Kinzercystis, the ambulacra are confined to the thecal surface and erect, biserial brachioles arise alternately on either side. Lepidocystis has a similar arrangement except that, the distal part of each ambulacrum extends beyond the edge of the theca as a free arm. 8. Pelmatozoans diverged more or less immediately into crinoids, with multiple free arms composed of uniserial plates, and cystoids sensu lato, which retained brachioles. Gogia (Lower to Middle Cambrian) is the most primitive known cystoid and differs from Kinzercystis principally in having all plating tesselate, while Echmatocrinus (Middle Cambrian) is the most primitive known crinoid and differs from Lepidocystis in lacking brachioles and in having more than five free arms with uniserial plates. 9. Post Lower Cambrian differentiation of pelmatozoan groups proceeded rapidly, exploiting the primitive suspension-feeding mode of life. Maximum morphological diversity was reached in the Ordovician, but thereafter crinoids progressively displaced cystoid groups and reached their peak diversity during the Carboniferous. The eleutherozoans were slower to diversify, but by the Arenig the earliest ‘sea-stars’ (in reality, advanced members of the eleutherozoan stem group) had reversed their living orientation and had begun to exploit a deposit-feeding mode of life. These in turn led to the ophiuroids, echinoids and holothuroids. 10. The basic echinoderm ambulacrum was already present in the helicoplacoids. It had biserial, alternate flooring plates and complexly plated sheets of cover plates on either side. The radial water vessel lay in the floor of the ambulacrum, external to the body cavity, and gave rise ventrally to short, lateral branches (fore-runners of tube feet) that were used to open the cover plate sheets, and dorsally was connected to internal compensation sacs which acted as fluid reservoirs (and were preadapted for a role in gaseous exchange). Plating on the cover plate sheets was organized and reflected the positions of the lateral branches from the radial water vessel. In Camptostroma, the cover plate sheets had biserially aligned rows of cover plates associated with the lateral branches. 11. Brachioles arose by extension of the lateral branches of the radial water vessel and associated serially aligned cover plates found in Camptostroma. They bear a single alternate series of cover plates. In Lepidocystis the ambulacra extended beyond the edge of the oral surface as true arms. Brachial plates of arms are homologues of primary ambulacral flooring plates, and arms bear multiple series of cover plates. Uniserial ambulacral plating is a derived condition and evolved independently in crinoids, paracrinoids and isorophid edrioasteroids. Pinnules in crinoids arose independently in inadunates and camerates by a progressively more unequal branching of the arms. Thus all parts of the subvective system in crinoids are internally homologous, whereas in cystoids, brachioles and arms (or ambulacra) are not homologous structures. 12. The position of the hydropore is the best reference point in orientating echinoderms. Carpenter's system of identifying ambulacra by letters, arranged clock-wise in oral view with the A ambulacrum opposite the hydropore, is consistent in all echinoderm classes. In all Lower Cambrian pentaradiate echinoderms the anus, gonopore and hydropore lie in the CD interambulacrum and this is accepted as the primitive arrangement. In helicoplacoids we tentatively suggest that the A ambulacrum spiralled down from the mouth while the two ambulacra that spiralled up represent the B + C and D + E ambulacra combined. 13. The pelmatozoan stem arose from a polyplated stalk, via a meric stem to a true column with holomeric (single piece) columnals. This happened independently in the crinoids and the cystoids. 14. Our analysis of echinoderm phylogeny leads us to recommend the following changes to the higher level classification of echinoderms: The phylum Echinodermata includes only those groups with radial symmetry superimposed upon a fundamental larval asymmetry. It has a stem group that contains the triradiate helicoplacoids and a crown group to which all other (pentaradiate) echinoderms belong. The crown group contains two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa, and the Pelmatozoa contains two superclasses, the Crinoidea which are extant and the Cystoidea, which are extinct.  相似文献   

6.
A rich material of echinoderm fragments from two Middle Cambrian stratigraphical levels on Bornholm are preserved due to phosphatization of the original calcitic stereom. Preservation of echinoderms in this way - not previously recorded from the Middle Cambrian - permits detailed analysis of the three-dimensional stereom structure. Identifiable are fragments of stylophorans and eocrinoids. Stem columnals, most likely from eocrinoids, show a wide and advanced morphological variation indicating articulation similar to that of crinoids. The material from the Exsulans Limestone/Kalby marl ( Ptychagnostus gibbus Zone) represents stem-bearing cystoids older than Akadocrinus from Bohemia. The Andrarum Limestone ( Sole-nopleura brachymetopa Zone) contains echinoderm fragments from a higher stratigraphical level, a level correlatable with that from which the oldest North American stem–bearing cystoid, Eustypocystis , has been recorded.  相似文献   

7.
The fossil record indicates that crinoids have exhibited remarkable regenerative abilities since their origin in the Ordovician, abilities that they likely inherited from stem-group echinoderms. Regeneration in extant and fossil crinoids is recognized by abrupt differences in the size of abutting plates, aberrant branching patterns, and discontinuities in carbon isotopes. While recovery is common, not all lost body parts can be regenerated; filling plates and overgrowths are evidence of non-regenerative healing. Considering them as a whole, Paleozoic crinoids exhibit the same range of regenerative and non-regenerative healing as Recent crinoids. For example, Paleozoic and extant crinoids show evidence of crown regeneration and stalk regrowth, which can occur only if the entoneural nerve center (chambered organ) remains intact. One group of Paleozoic crinoids, the camerates, may be an exception in that they probably could not regenerate their complex calyx-plating arrangements, including arm facets, but their calyxes could be healed with reparative plates. With that exception, and despite evidence for increases in predation pressure, there is no compelling evidence that crinoids have changed though time in their ability to recover from wounds. Finally, although crinoid appendages may be lost as a consequence of severe abiotic stress and through ontogenetic development, spatiotemporal changes in the intensity and frequency of biotic interactions, especially direct attacks, are the most likely explanation for observed patterns of regeneration and autotomy in crinoids.  相似文献   

8.
It has long been thought that feather star arms flex due to muscular contraction and extend due to an opposing elastic force supplied by the ligaments, however, in 1985, Candia Carnivali and Saita (J. Morph. 185 , 59–74) proposed that extension was due not to elastic ligaments, but to hydraulic pressure within the coelomic canals of the arm. We tested this new proposal experimentally by destroying the coelomic canals along the proximal halves of all ten arms of a feather star and then inducing it to swim. The wave form of the swimming arms was recorded on cine film for frame analysis. While the animal was swimming even the arm regions without coelomic canals were able to extend vigorously. Therefore, hydraulic pressure in the coeloms is not required for arm extension in feather stars. Our results are consistent with the classical idea that elastic ligaments extend the arms of crinoids.  相似文献   

9.
A traditional, widely cited hypothesis for over a century posits the origin of the crinoids from blastozoans. The blastozoan hypothesis is contradicted by the discovery of a new crinoid order, the Protocrinoida. Protocrinoids exhibit many traits that are consistent with a basal crinoid phylogenetic position, but inconsistent with a blastozoan ancestry. Protocrinoids are among the oldest crinoids and are therefore stratigraphically correctly placed. The blastozoan hypothesis in contrast, relies on putative homologies between blastozoans and crinoids taken from taxonomically and stratigraphically disparate representatives of both groups; these disparities indicate homoplasy rather than propinquity of descent. Data supporting these ideas are reviewed here. These findings reinforce insightful observations made by Georges Ubaghs decades ago with less data.  相似文献   

10.
Echinoderms are a major group of invertebrate deuterostomes that have been an important component of marine ecosystems throughout the Phanerozoic. Their fossil record extends back to the Cambrian, when several disparate groups appear in different palaeocontinents at about the same time. Many of these early forms exhibit character combinations that differ radically from extant taxa, and thus their anatomy and phylogeny have long been controversial. Deciphering the earliest evolution of echinoderms therefore requires a detailed understanding of the morphology of Cambrian fossils, as well as the selection of an appropriate root and the identification of homologies for use in phylogenetic analysis. Based on the sister‐group relationships and ontogeny of modern species and new fossil discoveries, we now know that the first echinoderms were bilaterally symmetrical, represented in the fossil record by Ctenoimbricata and some early ctenocystoids. The next branch in echinoderm phylogeny is represented by the asymmetrical cinctans and solutes, with an echinoderm‐type ambulacral system originating in the more crownward of these groups (solutes). The first radial echinoderms are the helicoplacoids, which possess a triradial body plan with three ambulacra radiating from a lateral mouth. Helicocystoids represent the first pentaradial echinoderms and have the mouth facing upwards with five radiating recumbent ambulacra. Pentaradial echinoderms diversified rapidly from the beginning of their history, and the most significant differences between groups are recorded in the construction of the oral area and ambulacra, as well as the nature of their feeding appendages. Taken together, this provides a clear narrative of the early evolution of the echinoderm body plan.  相似文献   

11.
Gudo M 《Acta biotheoretica》2005,53(3):191-216
The early evolutionary history of echinoderms was reconstructed on the basis of structural-functional considerations and application of the quasi-engineering approach of ‘Konstruktions-Morphologie’. According to the presented evolutionary scenario, a bilaterally symmetrical ancestor, such as an enteropneust-like organism, became gradually modified into a pentaradial echinoderm by passing through an intermediate pterobranch-like stage. The arms of a pentaradial echinoderm are identified as hydraulic outgrowths from the central coelomic cavity of the bilateral ancestor which developed due to a shortening of the body in length but widening in the diameter. The resulting pentaradial symmetry is a consequence of mechanical laws that dictate minimal contact surface areas among hydraulic pneumatic entities. These developed in the coelomic cavity (metacoel) in the bilaterally symmetrical ancestor, when from the already U-shaped mesentery with the intestinal tract two additional U-shaped bows developed directly or subsequently. During the subsequent development tensile chords of the mesentery ‘sewed’ the gut with the body wall first in three and secondly in five ‘seams’. During the direct development five ‘seams’ between tensile chords and body wall developed straightly. These internal tensile chords subdivide the body coelom into five hydraulic subsystems (‘pneus’), which eventually arrange in a pentaradial pattern. The body could then enlarge only between the tensile chords, which means that five hydraulic bulges developed. These bulges initially supported the tentacles and finally each of them enclosed the tentacle until only the feather-like appendages of the tentacles projected over the surface. The tentacles with their feathers were transformedinto the ambulacral system, and the bulges become the arms. These morphological transformations were accompanied and partly determined by specific histological modifications, such as the development of mutable connective tissues and skeletal elements that fused to ossicles and provided shape stabilization in form of a calcareous skeleton in the body wall. The organism resulted was an ancestral echinoderm (‘Ur-Echinoderm’) with an enlarged metacoel, stabilized by hydraulic pressure working againsta capsule of mutable connective tissue, skeletal elements and longitudinal muscles. In regard to these reconstructions, the body structure of echinoderms can be understood as a hydraulic skeletal capsule.  相似文献   

12.
Taphonomic information is examined to evaluate the early history of connective tissues in the Crinoidea. The pattern of stalk segmentation of Middle and Late Ordovician crinoids is consistent with the two-ligament (intercolumnal and through-going ligaments) pattern present in living isocrinid crinoids and interpreted for fossil isocrinids, holocrinids, and Lower Mississippian crinoids. A single rhombiferan was also examined; its taphonomic pattern is also indicative of this style of tissue organization. Furthermore, the taphonomy of all Middle and Late Ordovician crinoids may reflect that they lacked discretely organized muscles between arm brachials, which is consistent with the hypothesis that muscles evolved as a connective tissue between plates only once within the Crinoidea, during the Early Devonian. These data indicate that the two-ligament organization of the stalk is a primitive feature among the Crinoidea and perhaps even among stalked echinoderms. Therefore, the autotomy function of this column-tissue organization among living crinoids is an exaptation. On the other hand, discretely organized muscles as connective tissue in crinoid arms is a derived trait that first appeared during the middle Paleozoic; this adaptation proved very successful for the advanced cladid crinoids.  相似文献   

13.
Coelomocyte are found in the fluid filling coelomic cavity of echinoderms and depending on species can be a mixture of several morphologically different types. There are among them: granular and agranular amoebocytes, morula cells, vibratile and lymphocyte-like cells. All these cells take part in cellular response to immune challenges through phagocytosis, clotting, encapsulation of foreign particles, cytotoxicity, and the production of antimicrobial agents, such as reactive oxygen and nitric oxide. The data are given on a variety of humoral factors found in the coelomic fluid, including different types of lectines, agglutinins, hemolysins, acute phase proteins and antimicrobial factors. The discussion on cooperation between cellular and humoral arms of defense reactions during inflammation reveals the crucial role of coelomocytes in immune response. It is suggested that the sea urchin complement system (that is homologous to the alternative pathway in vertebrates) is appeared initially in echinoderms as a protein cascade that points to opsonization of foreign cells and particles, augmenting their phagocytosis and subsequent destruction by coelomocytes. So the identification of a simple complement system as a part of the echinoderm immune response shows that these animals as well as all invertebrate deuterostomes share innate immune system homologies with vertebrates. Studying the simpler immune response demonstrated by echinoderms is important for understanding the ancestral deuterostome defense system and reconstructing the evolution of immune system in higher vertebrates.  相似文献   

14.
The early Middle Cambrian Monastery Creek Phosphorite (Beetle Creek Formation, Queensland, Australia) contains an assemblage of disarticulated echinoderm ossicles that are exquisitely preserved. Amongst this material we recognize pelmatozoan brachials, radials, basals and holomeric columnals. Although we cannot reconstruct the complete animal with precision, these elements represent the oldest known pelmatozoan with crinoid-like appendages. Key elements include isotomously to heterotomously branched uniserial appendage plates with a tripartite adoral food groove, a longitudinal central canal interpreted as housing entoneural nerve, and differentiated articulation facets. There are also epispire-bearing radials bearing one to four arm insertion-facets, each one pierced by a central neural canal. These canals run internal towards the oral area beneath the external food groove. Co-occuring material includes single truncated cone-shaped basals and holomeric columnals, both with a similar articulation pattern, and irregular, epispire-bearing thecal plates. This mosaic of crinozoan (uniserial isotomous to heterotomous arms with neural canal), blastozoan (epispire-bearing thecal plates, appendage leading to oral thecal food groove without direct connection with body cavity) and apomorphic characters (circumoral instead of basal entoneural plexus) is unexpected and demonstrates that crinoid-like pelmatozoans with uniserial, branched arms appeared significantly earlier than the Tremadocian, when the first articulated crinoid skeletons are found. It also raises questions about the polyphyletic appearance of feeding appendages among pelmatozoan echinoderms.  相似文献   

15.
Summary The haemal and coelomic circulatory systems in arms and pinnules of a stalkless crinoid are described by transmission electron microscopy, and the coelomic topography is revealed by scanning electron microscopy of corrosion casts and peritoneal surfaces. In addition, the route of the coelomic circulation in the living crinoid is shown by injection of carmine particles, and sites of peritoneal phagocytosis are demonstrated by injection of latex beads. The most important morphological findings are: the controversial hyponeural circulation is haemal and not coelomic; peritoneal ciliation is general and not limited to the cells of the ciliated pits; and occur smooth muscle cells occur below the peritoneum. Carmine particles injected into the central body coelom rapidly travel outward toward the arm and pinnule tips via the aboral canals; the particles return to the central body via the subtentacular canals. Latex beads injected intracoelomically are taken up by peritoneal cells throughout the subtentacular, genital and aboral canals. The possible functions of the haemal and coelomic circulatory systems of crinoids are discussed.  相似文献   

16.
Featherstars, comatulid crinoids that shed their stalk during their ontogeny, are the most species-rich lineage of modern crinoids and the only ones present in shallow water today. Although they are of considerable palaeontological interest as a ‘success story’ of the Mesozoic Marine Revolution, their fossil record is relatively species-poor and fragmentary. New Spanish fossils of the Cretaceous featherstar Decameros ricordeanus preserve the shape and configuration of nervous and circulatory anatomy in the form of infilled cavities, which we reconstruct from CT scans. The circulatory system of D. ricordeanus was relatively extensive and complex, implying a pattern of coelomic fluid flow that is unique among crinoids, and the peripheral parts of the nervous system include linkages both to the circulatory system and to the surface of the body. A phylogenetic analysis (the first to include both living and fossil featherstars and which includes characters from internal anatomy) recovers D. ricordeanus among the lineage of featherstars that includes Himerometroidea, Tropiometra and ‘Antedonoidea’, among others. D. ricordeanus is larger than almost any modern featherstar, and its elaborate coelomic morphology appears to be a consequence of positive allometry. All featherstars with coelomic diverticula are shown to belong to a single comatulid subclade, and this feature may constitute a synapomorphy of that group. Some preservation of cavities corresponding to soft tissue is probably not exceptional in fossil crinoids, providing an opportunity to study the diversity and evolution of extinct anatomical systems typically only preserved in Lagerstätten.  相似文献   

17.
The similarity in the skeleton model of the brachiolar food-gathering system of Blastozoa and the arm system of Crinozoa, including the apical growth with enantomorphous displacement of skeletal ele-ments, is explained by the primary organizing role of the radial ambulacral canals, which have the same branching model for ambulacral tentacles. The difference in the positions of brachioles and arms relative to the theca (exothecal and endothecal) is associated with the formation of the primary ambulacral tentacles directly on the body surface of the majority of Blastozoa, particularly, the closed vestibular cavity of crinoids. The supporting skeleton of brachioles arose as a branch of the plates covering the floor of the ambulacrum, if they were present, or formed similarly as a new formation outside the theca. The supporting skeleton of arms, brachials, developed as a result of the serial growth of plates positioned radially at the boundary of the aboral skeleton and tegmen formed due to the appearance of the vestibulum. The hypothesis of the inductive role of hydrocoel and its radial ambulacral appendages, which organize the arrangement of skeletal elements in the morphogenesis of echinoderms, enables the refinement of the principle of skeleton division into the axial and extraxial parts. The axial skeleton has a developmental model formed under the control of the radial ambu-lacral canals. Remaining skeleton is extraxial, subdivided into the symmetrized part arranged under direct or indirect organizing effect of the hydrocoel and unregulated, nonsymmetrized part, which is not connected initially with the influence of the hydrocoel.  相似文献   

18.
《Palaeoworld》2015,24(4):389-392
Regeneration and predatory–prey interaction of crinoids are reviewed. Crinoids have strong powers of regeneration, and arm regeneration is common in fossil and Recent crinoids. Regenerated arms commonly start from the ligamentary articulation called syzygy or cryptosyzygy, where crinoids can autotomize their arms. Therefore, regenerated arms can be formed after loss of arms by autotomy of arms, and such autotomy is commonly the response to predatory attacks. Thus, regenerated arms can be used as the clue to estimate the predatory frequencies. Regeneration of “correct” skeletal morphology as in the original depends on the existence of adoral nerve center. A stalk without the adoral nerve center cannot regenerate the “correct” morphology of the original skeleton, but forms of “callus” as skeletal overgrowth. The strong ability of regeneration is a key factor of the success of articulate crinoids in the geologic history since the Triassic onward.  相似文献   

19.
Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia was originally described as the earliest crinoid(?) known from the fossil record. Recently, Conway Morris and Ausich & Babcock have questioned whether Echmatocrinus is in fact an echinoderm, comparing it instead to cnidarians with a polyp-like body and pinnate tentacles, and other authors are beginning to use this reinterpretation. We studied the well-preserved holotype of Echmatocrinus brachiatus, two paratypes, and 18 new specimens recovered from different levels in the Burgess Shale sequence at three localities. All are preserved as pyrite films in dark shale with relatively little relief, suggesting a lightly skeletized body. Complete specimens have a long, slightly tapering, large-plated attachment stalk, a conical cup or calyx with numerous small to medium-sized irregular plates, and 7–10 short arms with heavier plating and (in the holotype) soft appendages alternating from opposite sides of several arms. Several morphologic features indicate that Echmatocrinus is an echinoderm and has crinoid affinities: (1) Sutured plates, shown by darker depressed sutures, slightly raised plate centers, and oriented plate ornament, cover all major parts of the body; (2) reticulate surface ornament in the pyrite film on the plates of all specimens matches the ornament in the Burgess Shale edrioasteroid Walcottidiscus, an undoubted echinoderm, but not the pyritized surfaces of other metazoans in the fauna; (3) this distinctive ornament may represent the surface expression of microporous stereom; (4) possible ligament or muscle pads are present between the arm ossicles to fold and unfurl the more heavily plated arms. Within the echinoderms, only crinoids commonly have a calyx attached by a stalk or stem to the substrate and bear erect, moveable, uniserial arms for feeding. Although Echmatocrinus shows some resemblance to octocorals in overall body shape as an attached suspension feeder, almost all the details are different, indicating that Echmatocrinus is most likely unrelated to this group. All complete specimens of Echmatocrinus are attached to hard substrates, either another fossil or skeletal debris. The new specimens indicate that Echmatocrinus was twice as common (about 0.02%) in the Burgess Shale fauna as previously recorded and represents one of the earliest attached, medium-level, skeletized, suspension feeders or microcarnivores in the fossil record.  相似文献   

20.
The Kanosh Shale (Upper Arenig, Lower Ordovician) of west-central Utah. USA. contains abundant carbonate hardgrounds and one of the earliest diverse hardground communities. The hardgrounds were formed through a combination of processes including the development of early digenetic nodules in clay sediments which were exhumed and concentrated as lags by storms. These cobble deposits. together with plentiful biogenic metrical. were cemented by inorganically precipitated calcite on the sea floor. forming intraformational conglomerate hardgrounds. Echinoderms may have -played a critical role in the development of hardground faunas since their disarticulated calcite ossicles were rapidly cemented by syntaxial overgrowths. forming additional cobbles and hardgrounds. The echinoderms thus may have taphonomically facilitated the development of some of the hard substrates they required. A significant portion of the hardground cements may have been derived from the early dissolution of aragonitic mollusk shells. Kanosh hardground species include the earliest bryozoans recorded on hardgrounds and large numbers of stemmed echinoderms. primarily rhipidocystid cocrinoids. Bryozoans and echinoderms covered nearly equal areas of the hardground surfaces. and there was a distinct polarization between species which preferred the upper. exposed portions of the hardgrounds and others which were most common on undercut. overhang surfaces. The Kanosh Shale hardground fossils combine elements of Late Cambrian assemblages and Middle Ordovician faunas, thus confirming predicted trends in hardground community evolution. especially the replacement of cocrinoids by bryozoans and. to a lesser extent, by other stemmed echinoderms, especially crinoids. The Kanosh community marks the transition from the Cambrian Fauna to The Paleozoic Fauna in The hardground ecosystem. *Carbonate hardgrounds, aragonite dissolution, calcite cement, Echinodermara, Trepostomata, Nicholsonclla. Dianulites. Porifpra. taphonomic facilitation, Utah. Pogonip Group, Kanosh Shale. Ordovician.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号